Comparison of resonance driving terms for SuperKEKB before and after optimizations - Updates

Demin Zhou

Acknowledgements:

K. Ohmi, K. Hirosawa, H. Sugimoto, K. Oide, E. Forest, D. Sagan (Cornell)

Study memo, Mar. 13, 2018

Outline

Introduction

- Lattice:
 - sler_1689.sad
 - sler_1689_w_const001.sad (by H. Sugimoto)
- > Theory for resonance driving terms
- Results by PTC (updates)
 - 3rd and 4th order RDTs
 - Momentum-dependent RDTs
- > Other updates
 - Ohmi-Hirosawa method compared with PTC
 - Luminosity calculation
- > Summary

1. Introduction

Relates presentations in past SuperKEKB mini-optics meetings

- H. Sugimoto, Sep. 8, 2016
- D. Zhou, Dec. 8, 2016 (There were mistakes in my slides, thanks to

H. Sugimoto)

- H. Sugimoto, Apr. 6, 2017
- K. Hirosawa, Jul. 6, 2017
- K. Ohmi, Sep. 21, 2017
- H. Sugimoto, Oct. 12, 2017
- D. Zhou, Feb. 15, 2018

3. Results by PTC: Chromatic β and v

4

> Detuning along the whole ring

3. Results by PTC: Chromatic β and v (IR)

> Detuning along the whole ring

3. Results by PTC: Chromatic β and v

Detuning along the whole ring - second order

6

3. Results by PTC: Chromatic β and v (IR)

Detuning along the whole ring - second order

3. Results by PTC: Chromatic dispersion

> Dispersion along the whole ring

• w/ constraints: No special control on chromatic dispersions?

3. Results by PTC: Chromatic dispersion (IR)

> Dispersion along the whole ring

• w/ constraints: No special control on chromatic dispersions?

3. Results by PTC: Chromatic coupling

- Chromatic coupling along the whole ring
 - w/ constraints: Chromatic coupling controlled

3. Results by PTC: Chromatic coupling (IR)

- Chromatic coupling along the whole ring
 - w/ constraints: Chromatic coupling controlled

► p_x²p_y term

• Hard-edge fringe fields of final focus quads are important sources

► p_x²p_y term

• How quad. hard-edge fringes contribute?

Magnet	ΔΥ	Magnet	ΔΧ
QC1RP	-1.0 mm	QC1RE	-0.7 mm
QC2RP	-1.0 mm	QC2RE	-0.7 mm
QC1LP	-1.5 mm	QC1LE	+0.7 mm
QC2LP	-1.5 mm	QC2LE	+0.7 mm

N. Ohuchi et al., IPAC'13

$> p_x^2 p_y$ term

• How quad. hard-edge fringes contribute?

► p_x²p_y term

• How quad. hard-edge fringes contribute?

+ Magnet offsets + COD => 3rd geometric terms

 $\ln[1] = (*f1 = K1 / (12(1+\delta)L) *)$ HQfr = f1 * $((x^3 + 3x * y^2) px - (y^3 + 3x^2 y) py);$ $D[HQfr, X] \star \Delta X$ $D[HQfr, px] * \Delta PX$ $D[HQfr, y] \star \Delta Y$ $D[HQfr, py] * \Delta PY$ Out[2]= f1 (-6 py x y + px (3 x^{2} + 3 y^{2})) ΔX Out[3]= $f1(x^3 + 3xy^2) \triangle PX$ Out[4]= f1 (6 px x y - py (3 x^{2} + 3 y^{2})) ΔY Out[5]= $f1(-3x^2y - y^3) \triangle PY$

Luminosity calculations

• ~1/3 caused by p_x²py term (from FFS, strength calculated by PTC)

~1/2 caused by chromatic effects (including interplay with geometric nonlinearities?)

• ~1/6 minor contribution from other nonlinearities

- Luminosity calculations
 - Important chromatic nonlinear terms (specific to sler_1689.sad): p_y²δ, yp_yδ, p_xyδ, xp_yδ

Important nonlinear terms (sler_1689) p_x²p_y

Important nonlinear terms (sler_1689) p_y²δ

Important nonlinear terms (sler_1689) ypyδ

Important nonlinear terms (sler_1689)

p_xyδ

• Discrepancy is due to different modelings of SAD and PTC (mainly related to time patching)

Important nonlinear terms (sler_1689)

xp_yδ

• Discrepancy is due to different modelings of SAD and PTC (mainly related to time patching)

5. Summary

Previous findings

- BB + Lattice nonlinearity cause luminosity loss in SuperKEKB
- Lum. drop happens at low beam current
- Related to amplitude-dependent latt. nonlin.
- > DA optimization w/ new constraints [by H. Sugimoto]
 - Small loss of DA and lifetime (reasonable)
 - Nonlinearity in chromatic beta, alpha, tune, and coupling
- functions [related to RDTs] suppressed successfully
 - Lum. gain achieved at low current
- Calculation of RDTs using PTC
 - Suppression of chromatic RDTs observed
- Compare PTC and SAD in nonlinear terms (3rd order)
 - Good agreement
 - Source (almost) well understood

5. Summary

Luminosity calculation

- Sources of luminosity loss (almost) well understood
- Calculations for latest lattices to be done
- Nonlinear optimization scheme
 - Use the knowledge of PTC and SAD calculation
 - Use available correctors for correction

• Consider strategy of simultaneous optimization of DA and luminosity