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Introduction

» Coordinates and coordinate systems for accelerators L L

positron ring Tsukuba
- Global coordinate system (GCS): Useful for alignments of

accelerator components (some codes choose this system for
simulations, such as GPT code)

- Local coordinate system (LCS) (Curvilinear coordinate system):

Useful for accelerator physics (optics design, tracking simulations,
etc.). Most accelerator codes work with this system

* Design orbit and closed orbit

1

electron-positron
injector linac

- LCS follows the design orbit

- The ideal particle follows the closed orbit
* Transfer maps

- Tracking simulations refers to the design orbit

- Twiss functions and nonlinear analysis refer to the closed orbit X,

Xzzﬂi—axl X():‘%li—ﬂx()

Closed orbit

X1=5C)1+ 09 X2=)_C)2+XO




Introduction

» A full description of particle motion along a
beam line requires powerful mathematical
techniques.

e Suppose the particle’s coordinates

(X, Py Vs Py» 2, 0), the linear transfer map from
position 1 to position 2 can be described by

the transfer matrix:

;x Ry Ry Ryz Ryy Rps Ryg ljcx
Y| | Fs1 K3y Ryz Ry K35 Ryg| | Y
Pyl Ry Ry Ryzs Ry Rys Ry Py
g Rs; Rs; Rs3 Rsy Rss Rsg (ZS
> \Re1 Rep Rg3 Rgy Rgs Reg 1

* Note that the transfer matrix around the design
orbit is not necessarily the same as around the

closed orbilt.

* Higher-order nonlinear components (such as

sextupoles, octupoles, harnomic cavities, etc.) are
often intentionally introduced to control particle
motion In a realistic accelerator. But, unwanted
nonlinear fields (or nonlinear kicks) often appear in
most beam line elements.

* The analysis of nonlinear dynamics relies on tools

such as Hamilton’s equations and Lie algebra
methods. The transfer matrix for linear motion is
then extended to the transfer map for nonlinear
motion:

* The transfer map around the design orbit is not

necessarily the same as around the closed orbit



Introduction

* SAD vs. PTC vs. LEGO

- SAD has a transfer map i (=equations of motion) around LCS for each

element i-type and a hand-derived linear map /%f (from A f) coded for

emittance/Twiss calculations. SAD has no nonlinear map ﬂf for nonlinear

analysis.

- PTC has a transfer map i (=equations of motion) around LCS for each

. . A ) 4
element i-type. PTC dynamically computes /- from /.. PTC’s /M ; are

similar to SAD’s, making the lattice translation between them trivial. PTC
tracks particles and “tracks” maps (Polymorphic tracking based on
differential algebra technique). PTC does not treat Hamiltonian, though
Hamiltonian is frequently discussed in PTC-related publications.

- LEGO is a code based on Hamiltonian [1]. The tracking maps /%f are

derived from Hamiltonian for each element i-type.

- T
I_

- T

* Equations of motion vs. Hamiltonian

nere are systems where the equations of motion can be found, but a

ne existence of a Hamiltonian does not guarantee that a system is

integrable. Integrable systems are a class whose equations of motion can
be solved analytically. Hamiltonian systems are a more general class of
integrable and non-integrable systems.

amiltonian cannot. These systems are known as non-integrable systems.

Tracking
(Macro particles)

Linear analysis
(Twiss/Emittance)

Nonlinear analysis
(Taylor maps, RDTs)

Linear optimization
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Introduction

» A circular collider presents most of the complexities in
accelerator physics. Understanding the transfer maps is
essential.

» [ransfer maps for single-particle dynamics

- DRIFT, BEND, QUAD, SEXT, OCT, DECA, MULT, SOL, RF, Wiggler,
Aperture(Collimator), ...

* Transfer maps for collective effects (not covered in this talk)

- Beam-beam, Impedances, Space charge, Electron cloud, lon
cloud, ISR, CSR, IBS, Touschek, ...

* Full tracking or analysis
- Analysis of maps using perturbation techniques

M=, oM, oMo M ~=enm...eli. .. eglsegh
- Analysis of tracking data (Poincare map, FMA, etc.)
- Perturbation maps used for tracking simulations

_> . . . . . o_>
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Practical examples

 Hamiltonian and canonical variables used in SAD [1]

The primary position variables are (x,y, s), where x and y are the displacements along the normal and
binormal vectors, n and b, respectively. Let t denote the tangential vector along s, then n, b, t consist a
right-handed system.

The action in ¢ is expressed by

S :/Ltcdt : (2)

mc : : . 5 . .
I - V1—-22+ 952+ (1 +2/p)28% + azd + ayy + (1 + z/p)ass , (3)
0

where pg and (ag, a,,a;) = e(Az, Ay, A,)/po are the design momentum and the normalized vector potentials,
respectively, and ~ denotes the derivative by ct. SAD’s coordinate only has the radius of curvature p in the
local z-s plane. Note that p is the curvature of the coordinate system, not that of the orbit. The transverse
vector potentials (a,, a,) are non-zero only in the solenoid region, where 1/p is zero.

Currently SAD does not handle the electrostatic potential.

As SAD uses s for the independent variable instead of ¢, the Lagrangean L for s is written as

dct

L=L—, (4)
- Zw VA2 — 22 + 42 + (1 +z/p)2 + aga’ + ayy’ + (1 + z/p)as (5)
0

where ’ is the derivative by s.
[1] https://acc-physics.kek.jp/SAD/



Practical examples

 Hamiltonian and canonical variables used in SAD [1]

The Lagrangean L defines the canonical momenta as

OL mex’ (6)
—a— Fay
Pz ox’ po\/CQt’Q —x2 — g2 — (LT :L‘/,O)Q =
LZa mey’ . (7)
VO /Aoy -(L+ajp
OL mc3t!
Pt :W = 2412 12 12 2 (8)
poy/c2t% — 22 — y2 — (1 4+ x/p)
which derives the Hamiltonian as
Hy =x'py +y'py +t'ps — L (9)
x
i (\/_CQmQ/p% el 0 R (e CLS) (1 T ;) - (10)

[1] https://acc-physics.kek.jp/SAD/



Practical examples

Instead of the canonical variables (¢, p;), SAD uses another set (z,p), The variable z means the logitudinal
postion, and p the total momentum, which is more convenient than p; especially in a low-energy case, ie.,
v ~ 1. The canonical variables (z,p) as well as the Hamiltonian H are obtained using a mother function

G =G(ps, 2 \/pt m?ct /pg — to(s) , (11)
0G \/ptpo m?ct

12

. 0 Do ’ (12)
0G \V/ P2pE — m2c?

= = - to(s) 13

Opi CPPo o(#) (13)

H I 8G (14)

<\/p e —(py—ay)2+a5) (1+%) : pob;o, (15)

where to(s) is the design arrival time at location s, E = y/m2c* + p2p? the energy of the particle, and
vo = 1/t5(s) the design velocity. The longitudinal position z is written as

z=—v(t—ty(s)) , (16)

where v is the total velocity of the particle. Note that z > 0 for the head of a bunch.
Thus the canonical variables in SAD are:

ey, 01 1 (17)
[1] https://acc-physics.kek.jp/SAD/



Practical examples

 Normal quadrupole

_ 1
A = (Axa Aya As) — (OaO’_Bl(yz o x2))

2
oB B
0x Byp

e Solenoid
. — 1 1
B =(0,0,B,) A =(A,A,A) = (—EBS% EBSX»O)

* Drift is nonlinear [1]. The exact transfer map

el is:

H(x,p,, ¥, Dy, 2, 6) = (—\/(1 +8)? —p; —p; + E/Vo) L

— DPx1
‘/'EQ - aj]_ I \/ 2 .2 2 L?
P™—Py17Py1
Px2 = Pzx1,
_ pyl
Yz = Y1 L
N e e ST
Py2 = Dy1,

’U)L

_ p
L) — X1 — (\/pz_pil_pzl V0

* |eading-order terms of a drift:

Py +p;

” 5 (P + ) .
X, x> e — - :
P 7Py 21+06)  i8(1+0)3

* The drift near the interaction point (IP) contributes to fourth-
order geometric nonlinearity (p;l term) and high-order

chromaticity (0-dependence). The pj term can dominate the

nonlinearity of the who

L* is relatively large [1
future e+e- circular col

[1] K. Oide and H. Koiso, Phys. Rev. E 47, 2010 (1993).

e ring when [ is extremely small and
. This is the case of SuperKEKB and

iders.

Courtesy of Y. Arimoto
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Practical examples

* The detector solenoid overlaps the drift around
the IP;

H(w,pe,y: 9y 2,0) = 7l = /9% = (0o + 3b:)? = (g — 30:0)

* The transfer map is exact and symplectic:

(1+6)sin¢p | (146)(1—cos ¢) .

To = I - b Pxi T b, Pyi s
Yo = U1 (1—|—5)(;—cos ®) Do (1—|—5b) sin ¢pyi7
Px2 = Pxi COS ¢ T Pyi sin ¢ 2({)_7_5) Y2,

: b
Py2 — _pa?'i_SHl ¢ T Pyi COS ¢ | 2g1_|_5) L2,

1—p2 —p2 —1
2o = Z1 \/\/1199;2.1?:;;]2. Av| L
i x1 Y1 |

Pxi = Pzl ™ 2(1+4)
L — b,x1
Pyi = Pyl 2(1+0)
Ay = 20—

vo

The large crossing angle for collision makes the
transfer maps around IP extremely complicated.
Only approximated maps can be implemented.

Overlap of solenoids and FF quads

HER

Courtesy of Y. Arimoto

HER

B s

12



Practical examples

» Special techniques are used to model the interaction region (IR) of SuperKEKB [1].

Detector Solenoid

+ s ) ¢
‘e\ ESL ESR g'

QC2RE

% 3mer Ci

Figure 1: The magnet and orbit layout of the SuperKEKB
IR: ESs are the compensation solenoids. QCls and QC2s
are the separated vertical and horizontal focusing supercon-
ducting quadrupole magnets, respectively.
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Figure 2: The magnet and orbit layout of the KEKB
IR: ESs are the compensation solenoids. QCSs are the
shared vertical focusing superconducting quadrupole mag-
nets. QCls are the additional vertical focusing normal-
conducting quadrupole magnets for the electron beam.
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Figure 3: The multipole element boundary and the multi-
pole field location in the lattice modeling: The red dashed-
lines show the boundary of the multipole element slice
aligned on the solenoid axis. The blue solid boxes show
the titled multipole field entities in the element slice. The

red solid boxes show the multipole field entities aligned on
the beamline.
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[1] A. Morita et al., “SuperKEKB interaction region modeling”. 13
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Practical examples

* Dipole soft fringe map (implemented in SAD
and imported to Bmad [1])

Bmad defines the bend soft edge map in terms of the field integral Fpy; for the entrance end and Fipo
for the exit end given by (see Eq. (3.5))

B B,o — B
Fy1 = Fing Hyap = / gs Bu®) ( W y(%)) (19.46)
pole 2 ByO
With a similar equation for Fiyo. The soft edge map is then
Ty =T1 +C1 P,
Py2 = Py1 + C2Y1 — C3 Yy (19.47)
N 1 ( N 1 5 1 4>
29 = 2 c —c ——c
2 1 1+ pay 1 Pzx1 2 2 Yy 1 3Yy
For the entrance face:
2 2
01: gtOtFHl ’ 02:2gtOtFH1, C3:O (19.48)
2(1+p2) 1+ p;
with g_tot is the total bending strength
Jiot =+ g _err (19.49)

g being the reference bend strength and g_err being bend the difference between the actual and reference
bend strengths (§3.5).

For the exit face, the subsitution is made

Fyg1 — Fo
Gtot — —YJrot (19.50)

When the SAD bend soft edge map is used (§4.20), the map is the same except that the value of c3 is

_ 8 Gt

C3 (19.51)

Quadrupole soft fringe map (implemented in
SAD and imported to Bmad [1])

Only the quadrupole soft edge fringe is modeled in Bmad. The model is adapted from SAD| |. The
fringe map is:
Ty = 1 €7 + go2 Py
Pz2 = p:::le_g1
Y2 =y1e 7' — gapy1 (19.53)

Py2 = py17

29 =2, — [91 Ty Pr1 + Go (1 + %) e 9 pﬁl] - [91 Y1 Py1 + 92 (1 — %) edt pil}
where
g1 = K, {ql
go = K1 fq2 (19.54)

K is the quadrupole strength, and £q1 and £q2 are the fringe quadrupole parameters. These parameters
are related to the field integral I,, via

1
fl = I, — 5 I
1

fq2 = I — 3 I (19.55)
where I,, is defined by
I, = Kil /_Z (Ky(s) — H(s — 50) Ky) (5 — 50)" ds (19.56)
and H (s) is the step function
1 0
H(s) = {0 z Z ) (19.57)

and it is assumed that the quadrupole edge is at sy and the interior is in the region s > sg.

[1] Bmad manual

14
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Practical examples

 Maxwellian hard-edge fringe maps are important sources of nonlinearity in storage rings.
* (General equations were developed (E. Forest et al.) and apply for BEND, QUAD, SEXT, ...

The magnetic multipole hard edge fringe field is modeled using the method shown in Forest|

For the m'" order multipole the Lee transform is (Forest Eq. (13.29):

(b + i ay,) (z +iy)™tl
=FR
J« =7 4(m+2)(1+06)
_ P [T Ay [
N 1+46

{wpm +Ypy +1i

The multipole strengths a,, and b, are given by (14.9) and the second equation defines f* and fY. On
the right had side of the first equation, the minus sign is appropriate for particles entering the magnet
and the plus sign is for particle leaving the magnet. Notice that here the multipole order m is equivalent

to n — 1 in Forest’s notation.

' 7 230 - (450
106 (110 Jios 120 |
3 ) | P i ‘ . Ah

Zi (T ps — ypy)}

(19.58)

With this, the implicit multipole map is (Forest Eq. (13.31))

ol =z — I”
140
s PLOLfT4pfo.fY
pI‘:pa:_
140
R i 19.59
Y =Y-133 (19.59)
_; phoyfT +p oy S
)
PRIt S
(14 9)?

[1] Bmad manual
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Practical examples

 |P drift and Maxwellian hard-edge fringe fields of final focus (FF) quads are the dominant
sources of nonlinearity in SuperKEKB and future e+e- circular colliders.

* The scaling law was found by Oide and Koiso [1]. The SuperKEKB case was investigated by
Ohmi and Koiso [2]. A simple scaling law describes the “level of challenge”:

*)
Y
J < A(uy)
YT (1 +2|K|L*2/3)Lx Y
Ring By* [um] K=k [m?] L*[m] Jy/A [um]
SuperKEKB HER 300 -3.1 1.22 0.018
SuperKEKB LER 270 -0.1 0.76 0.032 =— 1/20‘—
CEPC 1200 -0.17/76 1.5 0.76 ———
_ < 1/100
TLEP(BINP design) 1000 -0.16 0.7 1.36
KEKB 5900 -1.779 1.762 4.22

Courtesy of Y. Ohnishi

* The scaling law concluded that SuperKEKB is 100 times more challenging than KEKB.
« CEPC (and STCF?) is less challenging than SuperKEKB.

[1] K. Oide and H. Koiso, Phys. Rev. E 47, 2010 (1993). [2] K. Ohmi and H. Koiso, TUPEBO015, IPAC’10
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Practical examples

e “Feed-down” effect

o Feed-down: The magnetic multipoles are usually parametrized through the feed-down harmonics due to (a,, b,) harmonics can be calculated.

the formula

B, +iB, = By Z(bn + iay)(z + iy)", (4.1)

n=>0

where By is the design bending field and b,,, a,, are the normal and
skew multipole strengths with the dimension m™". Given Eq.(4.1) for
the magnetic field, it follows that the potential function V' is given by

1

7 (0n Hian)(z + iy)" . (4.2)

V =6,4Re Z
n=0

The feed-down is calculated by generalizing Eq.(4.2) to

= 1
V = 64Re Z n——i—l(bn + iay)[z + Az +i(y + Ay)|" T, (4.3)
n=0

where Az and Ay is the horizontal and vertical orbit. If we restrict
ourselves to terms linear in Az or Ay, we find the following contribu-
tions from the feed-down

an—1 = n(apnAx + byAy) + O(2), (4.4)
b,_1 = —n(a,Ay — b,Az) + O(2). (4.5)

The general formulation of feed-down is to respectively replace z and
y by z+ Az and y+ Ay in Eq.(4.1) and expand it into series [10]. Then

The relevant monomials associated with a given order k are

n!

kl(n—k)!

b + iag = (b, + iay) [ ] (Az+iAy)"™ . (4.6)

For example, with £ = n — 1 the above equation gives Eqs.(4.4) and
(4.5). Here American convention is used, n = 0 indicates a dipole field,
n = 1 indicates a quadrupole field, etc.

In principle, with non-zero orbit offset, the n—order harmonics can
generate harmonics of all orders from 0 (dipole) to n — 1 (multipole).
Especially, feed-down is important in the interaction region (IR) of
SuperKEKB where the closed orbit is offsetted from the magnetic
center, and the quadrupole magnets are offsetted to compensate the
dipole field of detector solenoids and anti-solenoids.

Chromatic perturbations: The chromatic perturbations can be treated
as a feed-down where the orbit is given by the nonlinear dispersion
function 7

Az = én=0d(no+ om + ....), (4.7)

where 7 is the linear dispersion function. Furthermore, the multipole
strength is replaced by an effective multipole strength given by

by = —b,,. (4.8)

17



Practical examples

For SuperKEKB, the 4th-order quad fringe map was downgraded to 3rd-order nonlinearity due
to magnet offsets and closed orbit. A p)%py term was identified to cause a significant luminosity

loss In simulations.

= (%*Fl=K1/ (12 (1+6) L) *)

Out[2]=

Out[3]=

Out[4]=

HQfr = f1 % ((x3+3X*y2) pXx - (y3+3x2 y) py);

D[HQFr, x] *AX
D[HQfr, px] % APX
D[HQfr, y] * AY
D[HQfr, py] * APY

fl1 (-6py xy +px (3x*+3y?)) aX

x> +3xy?) APX \

f1 (x°
fl (6pxxy-py (3x*+3y?))aY 0.12 IPTC |
f1(3xy - y?) Ay 01l SK2+K3, SAD ——
K2+K3+SK2+SK3, SAD ——
0.08 - Quad.Fringe+K2+K3+SK2+SK3, SAD —— 1
0.06

0 5 10 77

3005 3010 3015
s [m]

1 O I I I I I éBWS I

2 SAD BBWS
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9r P 414 1689: SAD -

sler 1689 w const001: SAD

Design

L Y YT
T VY

: 0 5 10 15 20 25 30 35 40

Turn [10 ]
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From transfer maps to nonlinear analysis

* Lie formulations: Dragt-Forest paper (1983)

Computation of nonlinear behavior of Hamiltonian systems using Lie
algebraic methods

Alex J. Dragt® and Etienne Forest®©
Center for Theoretical Physics, Department of Physics and Astronomy. University of Maryland, College Park.
Maryland 20742

(Received 15 March 1983; accepted for publication 18 July 1983)

Lie algebraic methods are developed to describe the behavior of trajectories near a given trajectory
for general Hamiltonian systems. A procedure is presented for the computation of nonlinear
effects of arbitrarily high degree, and explicit formulas are given through effects of degree 5.
Expected applications include accelerator design, charged particle beam and light optics, other
problems in the general area of nonlinear dynamics, and, perhaps, with suitable modification, the
area of S-matrix expansions in quantum field theory:.

8. COMPUTATION OF ~H ™

By definition, H, consists of terms of degree 3 and
higher,

Hy =H,+H, + . (8.1)
Also, in view 0of (6.10) and the fact that .#', produces a linear

transformation when acting on £ " [see (7.7)], it follows that
H;' has the decomposition

igt _ H;m + H‘;m 4 e, (82)

where each term H ™ is a homogeneous polynomial of de-
gree m given by the relation

Hint( g—in’ t) =Hm (l"//zé.in, t) (8.3)

m

To see how this works out in a specific case, consider the
computation of /. The terms of still higher degree are
handled analogously. Suppose that H, 1s written in the ex-
plicit form

HyE" )= 3 T (t) 360 60 (8-4)

abc
where 7, 1s a set of (possibly time-dependent) coefficients.
Then use of (8.3) gives the relation

H (S t)= 3 Topel M, ENM SN LEE), (8.5)

abe

19



From transfer maps to nonlinear analysis

* Lie formulations: Irwin-Wang paper (1996)

© 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

EXPLICIT SOFT FRINGE MAPS OF A QUADRUPOLE

John Irwin and Chun-xi Wang
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA

III. NON-LINEAR FRINGE MAP

Consider the map from the center of the quadrupole s; = 0 to
a point s, that 1s far outside the fringe field region. Our goal is
to find a simplectic fringe map Q  which represents the fringe
field effects so that the map M(s; — s,) can be written as

M(s1 = 52) = Mo(s1 = s0) Qf Marifi(so —> s2)  (11)

where M 1s the map of an ideal quadrupole of strength k&, and
length 50 = L.rr; Mayris: 1 the drift map from sg to s5. (They
may contain kinematic nonlinearity even though we neglect it in
our calculation of Q r. This approximation may not be good at
the 6-th order)

Before working on Eq.(11), we concentrate on the non-linear
part, i.e. considering

M(s1 — 53) = R_(s1 = So) Qf Ry(s0 —> 52) (12)

where R . are exact linear maps. To calculate this, we choose the
perturbation H (s) as in Eq.(5), slice the time dependent Hamil-
tonians into pieces and move all the linear map before and after
so to the left and right side respectively using similarity trans-
formation. This process 1s exact. Then we concatenate all the
nonlinear pieces into a perturbation map O r via 2nd order BCH
formula. Since we are concerned with up to 6-th order genera-
tors, 3rd and higher order BCH terms do not contribute 1in this
case. Therefore

Qf —e fsslz dsH (s)+1 fsslz ds [> d5[H (), H(3)): (13)

where H (s) = H(s, R(so = $)X); X represents the phase space
variables and R(a — b) 1s the exact linear matrix from a to b.
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From transfer maps to nonlinear analysis

* Resonance driving terms (RDTs)

The effective Hamiltonian of a ring can be normalized in resonance bases

[Ref. E. Forest, Beam Dynamics — A New Attitude and Framework, 1998]. In the resonance basis, using action-angle variables (J, ¢) one can write
: X FiP
For a ring with n elements, one can normalize the one turn map Mi_,, as hf =V Jxei“bx = NG =,
[Ref. L. Yang et al., Phys. Rev. ST Accel. Beams 14, 054001 (2011)]
ChE R ] eTitx — gEibinsjxpE
Min = Afle:h:Rl—m.Al, R’—Uhx o Rl—U Jxe =€ ! hx )

where p;_,; x Is the phase advance of i — j. Consequently, the potential of
a multipole magnetic field can be expanded in the resonance bases of

h:

with R: rotation, e : nonlinear Lie map, A1: normalizing map. Assume

no coupling (the theory can be generalized for nonzero coupling), A; in x

| he ith el b . di hati X habcde as
plane at the ith element can be approximated in perturbation theory as h— Z habcdeh;_ah;bh;_ch;dfse-
Aix = 1/ Bx,ix + Nx,i0, Each hapcde (2 complex number in general) drives a certain resonance, and
Is an explicit function of magnet strengths, beta functions and dispersions.
—Qx i X 1 Px /
Aipx — + 7']x,id'
Bx,i
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From transfer maps to nonlinear analysis

* Resonance driving terms (RDTs)

The effective Hamiltonian corresponding to chromaticity is
he =)  hirooeh th '8¢ + > hoorrehy h,t6°,

he = J Y h1100e6° + Jy Y hoo11e0°.
Then the tunes are calculated as

1 Oh, 1
——=%"h e
21 0J, 2T 1100¢0°

Uy —

1 Oh, 1 .
Vy = o 8Jy — _E Z hoo11e0° -

Therefore the RDTs of h1100e and hggi1e correspond to linear and
high-order chromaticity.

habcde

Driving effects

h11001, hoo111

Linear chromaticity (y, ¢,

h21000, h12000
h30000. 103000
h10020, ho1200
h20010. h02100
hoo210, 00120

h10110.ho1110
h00300. 100030
h10200, h01020
h20100. ho2010
h11100,h11010

v [(d)>2INI(H) M2 ()]

v, [(4)* 21130y [(4y)*/7]

Ux — 2Vy”’/x + 2y [(Jx)l/z(J)/)]
Uy — y||21/x T Vy [(JX)(Jy)l/z]

vy [(4y )2 111(Je) (%) /2]

h22000, 00220, h11110

h40000, ho4000
h31000, 113000
hoo310.h00130
h20020, h02200
h30010. h03100
h10030. 01300

hoo400, ho0040
h20110,ho2110
h11200, h11020
h20200, 102020
h30100., h03010
h10300, 01030

dvy/dJy.dv, [dJy, dvy.,/dJ,

Ay,
21Uy
2y,

(4)?
(4%
()

4vy [(Jy)z]
[(L)(Iy )]
[(4x)(Iy )]

vy — 2Vyi|2VX + 2vy [(Jx)(Jy)]

3ux — vy |[Bux + 1y [(

3/2(J,)12)

Jy)
v — 3y ||vsc + 3vy [(J)V2(Jy) /7]

Table : Low-order driving terms.



Single-particle nonlinear dynamics

» For a storage ring, the particles take periodic motion * Usually higher-order resonances (= larger number of
because of periodic lattice. The nonlinear analysis of |m, | + |m,| + [m]) are less harmful than lower-
transfer maps usually results in strong correlation of
dynamics with betatron resonances (X-Y coupling)
and synchro-betatron resonances (X-Y-Z coupling):

order resonances. The working point (v, Uy0s Vi)
should be away from dangerous resonances.

 Sometimes the resonances are correlated with

single-particle dynamics, but more often they are
— Int correlated with collective effects. Collective effects
My + myby, + my; = Integer depend on bunch/beam current.

 When a storage ring is operating on a resonance, the

mv, + my, = Integer

kicks felt by particles will accumulate from turn to
: : : 09}
turn, leading to a large amplitude of betatron motion. 0.
 Resonances are generally harmful to the beam _ 0:7
quality (characterized by emittances, beam sizes, § 06 Resonance diagram
lifetime, detector background, etc.). Z o5k with |m,| + |m,] < 5.
. Taking the fact of ¢, < €, < €. (~1 : 10° : 10°) at £ 04 The blue dot shows the
Yo ¢ © design working point of
SuperKEKB, any coupling from X- and/or Z- - 03¢ /| SuperKEKB.
directions would make a significant change to ¢, 0.2 R
L 0.1} RN :
and consequently reduce luminosity. ) — "\ /‘\V/‘\r&

|

0.1 02 03 0.4 0.5 06 0.7 0.8 0.9 1
Fractional tune v,

0

0
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Single-particle nonlinear dynamics

» At SuperKEKB, a list of dangerous resonances
can be tentatively given:
» Geometric lattice resonances with
|m, | + [m,| < 4 mainly related to sextuples:

m, v, + myv, = Integer
> Chromatic coupling resonances with
m, = 1 and 2 mainly related to nonlinear IR:
vy — Uy, + myg = Integer
» X-Z synchro-betatron resonances with

[ 4 4

m, = 1 to 4 mainly related to dispersive sections

(IR and Arcs) and beam-beam interaction:
2v, — my, = Integer
> Y-Z synchro-betatron resonances mainly related

to vertical impedances from small-gap
collimators:

2v, — m = Integer

 The most important beam-beam resonances with

m, = 2 and 4 due to large crossing angle and

“hour-glass” effect:

v, —my, + a = Integer

« Here a is a parameter related to incoherent beam-
beam tune shift and synchrotron tune.

 The resonance diagram with synchro-betatron
resonances can be plotted:

0.75

0.75

0.7} 0.7}

0.65 | 0.65

O
fop

0.6

Fractional tune Vy
Fractional tune Vy

0.55 |

O'50.5 0.55 0.6 0.65 0.7 0.75 0.5 0.55 0.6 | 0.165 ()1_7 0.75

Fractional tune v, Fractional tune v,
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Interplay of beam-beam and lattice nonlinearity in SuperKEKB

* Using the resonance diagram for illustration: Beam-beam interaction and wake fields dynamic change the strengths,

width and position of synchro-betatron resonance lines m v, + m v, + my, = Integer. The footprint of the beam in

tune space also depend on current and dynamically move around. It is difficult to locate the footprint in a region free
from dangerous resonances.

 Crab waist is a key remedy, but achieving perfect crab waist is a new challenge.

HER LER
0.75 0.75
~ v
0.7 0.7 \ / -
WA \ \‘ P
>> >> _ \\
S (.65 S (.65 - -
= = NS —
= T — Z \
- -
a5 0.6 5 0.6 -
Qv Qv
: : / N\
| “K\\
0.55 0.55 / Y \ 4 )
g / A
// \
0.5 05 \/

0.5 0.55 0.6 0.65 . . 0.5 0.55 0.6 0.65 0.7 0.75
Fractional tune v, Fractional tune v,



Interplay of beam-beam and lattice nonlinearity in SuperKEKB

L ] [ J L ] [ J k=3 - Er—.

LER tune su rvey Original (SK2=0) Chromatic coupling corr. No solenoid lattice -
sler_ 1704 80 _A YO1_cw1_40 4 bb.sad sler_1704_80_A_YO1_cw1_40_4_bb_cc.sad sler_ 1765 80_ 1-nosol—1 _bb_cw_ ts.sa&
turns = 10000 part|c|es 100 CW = 0% turns = 10000, particles = 100, CW = 0% 19 turns = 10000, particles = 100, CW = 0%

eyO/ £ 062

0.6

0.56

0.54

.62!

0.52 0.53 0.54 055056 0.57 0.58 0.59

. 1.2

0.520.530.540. 550 560.570.580.59

sler_ 1704 80 A Y01 _cw1_40 4 bb.sad
turns = 10000, particles = 100, CW = 100%

: 7T ke \ /] turns = 100_00,_particles_=_100,_CV\7 = 100%
oy - 0.62 :
CW = 100% - |
 Sextupoles are not re-optimized - . |
at each point.
0.520530 540, 550 560570580 59 0.520.530.540.550.56 0.570.5800.59

0.62| ‘ a ‘

Crab waist

0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
Vx

Courtesy of K. Oide A
“Clean IR”

[1] K. Oide, https:/kds.kek.jp/event/44644/. “Clean IR”: A transparent IR with minimal amplitude-dependent and chromatic nonlinearities



Summary

* A brief introduction to transfer maps and codes for accelerator modeling.

* Practical examples of transfer maps and their potential impacts on beam physics in SuperKEKB
were discussed.

* An elementary introduction to converting transfer maps to nonlinear analysis was presented.
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Single-particle linear dynamics

 Charge-particles’ motion in electromagnetic
field is governed by Lorentz force law:

—

F=g(E+7%XB)

* |In a uniform magnetic field a charged-particle
takes circular motion [1].

ig
UNIFORM MAGNETIC FIELD ; .
R
) d
o q
(b)

(a)

— X -—

(a)

[1] R. Feynman, “The Feynman Lectures on Physics”, https://www.feynmanlectures.caltech.edu/

* Dipole magnets are used to create a circular
particle accelerator. The beam circulates along
a closed orbit (“Fixed point”): The particle
trajectory closes on itself after one turn.

o Coll

><
'MW"\ B field
>

Core

__~Design orbit
‘ Closed orbit

-~
~~
~~ "
~ "'
~ -
~ -
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Beam-beam perspective on achieving target luminosity

How to achieve a “clean IR”
- IR remodeling (the mainstream upgrade plan (see M. Masuzawa’s talk) under investigation)

- Using CCT (Canted Cosine Theta) magnets: M. Koratzinos did the first exercise (considering constraints from the
technology and infrastructure of SuperKEKB) and showed encouraging results. Using the CCT magnets, a compact
and cleaner IR is conceivable (Idea: “The current distribution of any canted layer generates a pure harmonic field as

well as a solenoid that can be canceled with a similar but oppositely canted layer.” [2]).

Courtesy of M. Koratzinos
- From the beam-beam perspective, we invite full international collaboration on IR upgrades to achieve the target
luminosity of SuperKEKB.

[1] M. Koratzinos, https://kds.kek.jp/event/44644/. [2] S. Caspi et al., “Canted-Cosine-Theta magnet (CCT)-A concept for high field accelerator magnets” , IEEE Trans. Appl. Supercond. 24, 1. (2014). 30



