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Abstract

We have applied modern techniques for single particle Hamiltonian dynamics
to be able to pursue self-consistent modeling for both numerical evaluation
and analytical studies. These techniques made it feasible to pursue a system-
atic approach in the design towards a sextupole scheme for the Swiss Light
Source (SLS). The derivation of analytical formula to obtain insight into the
parameter dependence of various dynamical properties was simplified consid-
erable by the use of map normal form rather than traditional Hamiltonian
perturbation theory. In the process we also verified that perturbation theory
works fairly well for regions of phase space where the motion is regular, hence
allowing us to model and reduce the effecs of the nonlinear perturbations.
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1 Introduction

We would like to start by informing the reader that a critical point of view
will be taken in the following presentation. In particular when contrasting
here applied state of the art techniques against more old-fashioned. The
main reason originates from the observation that the scientific process is not
always as rational it likes to presume. We also prefer to view the many models
appearing in this field, including our owns, as little more than temporary
approximations, eventually to be replaced when more sophisticated methods
appears on the horizon. Furthermore, often heard claims like: “Existing
accelerator works.” or “Everything in the control room is linear.” have of
course little scientific content due to their inherent lack of precision.

In any case, a critical presentation can only aid to clarify matters for the
skeptical yet open-minded reader that prefers to draw his own conclusions
based on his own judgment. In particular, any newcomer to a field that has
to confront such a broad range of physical phenomena. And yet, often unnec-
essarily obscured by an individual tendency to overemphasize differences in
techniques rather than first establishing the common ground, rarely beyond
classical electrodynamics, from which the various advantages of the different
techniques would emerge in broad daylight. We therefore partly sympathize
with the slow acceptance among the many potential users that could benefit
from these new methods. See ref. [1] for an excellent general scientific review,
ref. [2]' for the more typical subjective, and ref. [3] for an attempt to reach
a coherent presentation from the experts.

In fact, we challenge the mathematically inclined reader to try to extract
a coherent picture? from the presentations in these publications noting that
they are, apart from the quantum fluctuations in synchrotron radiation, ap-
plications of classical electrodynamics [4]. On time scales where the effect
of synchrotron radiation can be ignored, the guiding principles for the vari-
ous techniques presented in these papers may be summarized as: relativistic
single particle Hamiltonian dynamics [5] taking advantage of the underlying

!The following references may serve as a set of papers complementing each other for
the reader interested in acquiring a somewhat broader point of view: basic Lie algebraic
techniques for accelerators [60, 61, 62, 63, 64, 65], generating function techniques [66,
67, 68], symplectic integrators [69, 70, 71, 72, 73, 74, 75, 76, 77], truncated Power Series
Algebra (TPSA) [78, 79, 80, 81, 82], map normal form [83, 84, 85, 86], synchrotron radiation
[87, 88, 89, 90, 92], accelerator modeling and design [91, 92, 93, 94, 95, 96, 97, 98].

2Ref. [1, 90] are two exceptions that may be viewed as a “proof of principle”.



Lie algebraic structure of Hamilton’s equations to numerically integrate or,
by using Truncated Power Series Algebra (TPSA) [6] for Automatic Differ-
entiation (AD) [7], evaluate, concatenate, extract and bring perturbatively
into normal form [8, 9] the corresponding symplectic maps.

We emphasize that even though the presented work was carried out for
the Swiss Light Source (SLS), the applied methodology is completely general
and suitable for any synchrotron. We will in the following therefore view
SLS as an example. Like any modern high performance synchrotron, it has
a magnetic lattice with very strong focusing and large natural chromaticity
which as usual is compensated by chromatic sextupoles. Since these then also
are relatively strong, the stability is governed by the corresponding nonlinear
dynamics.?

We are from a general point of view dealing with a confinement problem.
The study is complicated by the fact that different dynamical processes are
important on different time scales. They may be classified roughly as:

e First-turn: injection, first turn (single-pass) and closed orbit.

e Short-term: a few synchrotron oscillations, typically 102 turns; betatron-
and synchro-betatron motion and related resonances.

e Medium-term: one damping time, typically 10* turns; synchrotron ra-
diation (classical radiation, quantum fluctuations determining the equi-
librium emittance), and wake-field effects.

e Long-term: typically 10 turns; residual gas scattering, Touschek scat-
tering, and beam-beam interaction.

These are traditionally addressed by a step-wise process where one first es-
tablishes a lattice with reasonable short term stability. The other time scales
can then be analyzed, often by models parameterized in terms of global prop-
erties of the short-term dynamics [16, 17, 18, 19]. Refined considerations for

3SLS is a third generation synchrotron light source with state of the art brightness
primarily obtained by pushing the emittance. The linear optics design for such a source,
is a nontrivial nonlinear optimization problem which will not be addressed here. This
can to some degree be appreciated by the elementary fact that even though in itself a
linear stability problem, a realistic lattice design requires careful tailoring of related lattice
functions with strong nonlinear dependence on the magnet strengths. For these aspects see
[10, 11, 12, 13, 14]. The finally adopted lattice, based on a triple-bend-achromat structure
[15] was developed by A. Streun [13, 14]



the injection process or estimated life times may lead to new requirements
on some of the global properties and the lattice design becomes an iterative
process.

A fundamental problem for a systematic search of a solution for the con-
finement problem, is the lack of a complete theory for stability in the non-
linear case. The elegance and simplicity of linear control theory originates
from the fact that stability, controllability- and observability of a system can
be determined directly from certain algebraic properties of the mathematical
model. In particular, the eigenvalues of the state matrix* and the rank of
the controllability and observability matrix.> For the nonlinear case, stabil-
ity depends in general also on the initial conditions, and one is forced to
study the stability of individual trajectories for given initial conditions by
numerical integration, so called tracking.

Application of sophisticated mathematical methods has led to the well
known KAM-theorem [22], stating roughly that a system with periodic so-
lutions has quasi-periodic solutions for sufficiently small perturbations. But
this theorem is unfortunately rather academic, i.e. solution exists..., and has
found little use in quantitative accelerator design, the crux originating from
the definition of a sufficiently small perturbation.® We therefore have to rely
on a more intuitive approach, arguing that the long term stability ought be
improved by reducing the leading order nonlinear perturbations, since this
brings the equations of motion closer to the linear approximation for which
linear stability has been established in the process of linear lattice design.
The argument can be made somewhat sharper by considering the parametric
variation of the tune with for example the momentum deviation §. If one
considers an ensemble of particles over §, one may expect stability problems
for particles with an actual tune close to any betatron resonance driven by
the magnetic lattice. For electrons, one may of course argue that stability
over one damping time should be sufficient for stability over all times. But
this is naive since the electrons will in general be slowly crossing resonances

First applied to the alternating gradient synchrotron by Courant and Snyder [20] by
analyzing the state matrix (the one-turn transport matrix).

5See any textbook on the subject or [21] for a straightforward application to Hill’s
equation.

6To quote I. Percival [23]: “In fact Hénon showed Arnold’s proof only applies if the
perturbation is less than 107233 and Moser’s if it is less than 10~*%, in appropriate units.
The latter is less than the gravitation perturbation of a football in Spain by the motion
of a bacterium in Australial!”



in their trajectories of damped betatron oscillations towards the equilibrium
orbit. In particular just after injection and a Touschek event.

Systematic accelerator design relies on the fact that modern techniques
allows one to easily and self-consistently” test such a hypothesis against nu-
merical simulations based on precise models that describes the single particle
dynamics on the short- and medium-term time scales. Effectively, the accel-
erator physicist’s economy version of the aerodynamicist’s “wind tunnel”. At
large, feasible of course due to the relative simplicity of dynamics for systems
described by ordinary- rather than partial differential equations.

2 The Equations of Motion

The effect of synchrotron radiation can be neglected in the following treat-
ment since we are primarily concerned about control of the short term dy-
namics. This approximation is pursued for simplicity, since classical radiation
can be accommodated in the underlying theoretical framework by generaliz-
ing from a Hamiltonian flow to a vector field whenever required [3].

2.1 The Relativistic Hamiltonian

The Hamiltonian for a charged particle in an external electromagnetic field
transformed into the local comoving frame customarily used for accelerators
is given by [5, 20]

Hi (%,pz,y, Py, —Pt,ctis) = — [1 + hreg (s) w]

q 2 s a1 a0
x {p_oAs(s>+\/1—Ept+pt o= Lac ()] = [pu = Ly (0)] } 1)
where
E — E, 1 v
= - ) hre §) = ’ = 2
b Poc 1) pres (s) c )

"Using the same dynamical model for analytical- and numerical studies. In particular
when lattice errors are included.



and ¢ the absolute time of flight. pres is the local radius of curvature along the
reference curve followed by the comoving frame®. The momentum deviation

P —Do
6= 3
- (3)

is introduced by the canonical transformation

F2 == %[1—\/1+ﬁ2(25+52):|, H2:H1+%:Hl,
_T = %:_ B(1+0)ct
00 1+ 62 (26 +62)
_on 1y
P, = 6(ct)_ﬁ[1 \/1+ﬂ2(25+52)] (4)

leading to the Hamiltonian

H> (E,Pz,y,Py,5,Ct; 5) = - [1 + href (5) Z]
q 5 q 2 q ?
X {p—oAs (s)+ \/(1 +9)" — [Pm - p—oAm (3)] - [Py - p_oAy (3)] } ()

Note that 7', formally defined as the conjugate coordinate to 9, is not equal
to the tame of flight t, now given by

1+ (26+87)

t B(1+9)

(6)

2.2 The Expanded Hamiltonian

We now introduce a sequence of justifiable approximations with the goal to
obtain a simple but still accurate dynamical model. In the wultrarelativistic
limit when 8 — 1

pr— —0, t—=T (7)

8We emphasize that the reference curve is in theory completely arbitrary. From a
practical point of view, it is chosen primarily from engineering considerations, in particular
the shape of the ideal closed orbit. A corresponding magnetic guiding field with trajectories
of proper geometrical shape for ideal initial conditions is then determined.




This limit will be assumed in the following.® Note that at low energies, it
is more suitable to use the momentum conjugate to the time of flight ¢, i.e.
the energy deviation p; defined by eq. (2). The multipole expansion of the
vector potential [4] in the source-free environment of the beam can for the
piece-wise constant case!’ be written

Lag(s) = 0, La,(s)=0,

Do Do
p%)AS (s) = —Re 2—21 % [ian (8) + by ()] (Teitp)n
= —Re 2 % lia, (5) + bn (5)] (2 + iy)". (8)

From the curl in the curvilinear system [38]
1 0A, 0A;

Bq (s) 1+ hep(s)z s Oy’
hreg (5) 0A, 1 94,
B ———A —
v (5) Lt hep(s)z™ " 0z 14 heep(s)z 0s’
0A 0A
B = ==Y
one then obtains the corresponding fields
ol . n—1
By (s) +iBy(s) = —% > lian (s) + by ()] (rew)
n=1
. Do ke . . \n—1
= = > lian (8) + by (s)] (z + 1y) (10)
n=1

valid for h,.r(s) = 0. In the case of dipole magnets n = 1, there are two
natural geometries from an engineering point of view. The above Cartesian
geometry

9 A, (s) = by (s) (11)
Po
and the cylindrical
b 1+ hpe
iAs(S)Z— 1(8) + f(S)LU (12)

Do 2 href (3)

9The electron energy for SLS is &~ 2.1 GeV compared to a rest mass of only 0.511 MeV.
0Tgnoring fringe fields.




In the latter case the curvature of the local reference frame is chosen so that

hrer (8) = by (8) = 13
19 = () = (13
which has a geometrical interpretation in the form?!!

q 1

- = - 14

Do (Bps)g (14

known as the magnetic rigidity. For precise modeling of dipoles with gradi-
ents see [93] for technical details.

We now apply the adiabatic approrimation by taking advantage of the
fact that the synchrotron oscillations are in general much slower than the be-
tatron oscillations.!? The momentum deviation can in other words be viewed
as a slowly varying parameter rather than a dynamical variable obeying a
dynamical law so that the longitudinal motion decouples from the transverse.
The Hamiltonian eq. (1) is then expanded to third order in the phase space
variables but keeping the exact parametric dependence in §

Hs (2, P, Y, Dy; S)

pa+p, g
m + p—oAs (S) + O (4) (15)

For simplicity, we will assume that the magnetic lattice can be modeled
by a piece-wise constant field consisting of dipoles with cylindrical geometry
and quadrupoles and sextupoles with Cartesian geometry. This leads to

= _[1+href(5)$] 1+6—

H4 (xapxa Y, Dy, S)

— e Jr - b+
S @)+ 2 (P ae?) 0 (10

Since the local curvature Ay (s) is small for a “medium size” ring'?, higher
order kinematical terms may be ignored, so that finally

H1Sign convention for electrons for which a left handed coordinate system is more con-
venient.

2The tunes for SLS are: v, ~ 20, v, ~ 8 ,and v, ~ 0.01.

'3Roughly, lattices for which 1/p? < by. For SLS: py ~# 5 m, and by & 3 m 2.

7



Hs (2,2, Y, Dy; S)

2 )< B @ ant) o

Note, the ignored terms, including the kinematical term

P2+

2(1+9) (18)

Brey (s)

may contribute significantly to the chromaticity in “small rings” [24, 25].

2.3 Hamilton’s Equations

The equations of motion are obtained from Hamilton’s equations

' dx . 8H5 Pz

Y= BT 1151700,
i _ dpw aHS
Y. = =——

ds ox

= bi(s)6— (B (s) +b2(s)) = — b3 (s) (22— ¢*) + O (3),

dy 0Hs p
! _— = — = Y
ds  Opy 1+5+O(3)’

d OH.
Y, = % = _a—; = by (s)y + 2bs (s) 2y + O (3) (19)

<
Il

2.4 Symplectic Integration

The symplectic map generated by Hs can be approximated by a symplectic
integrator.'* A second order symplectic integrator'® is given by [70]

512 = e:fLH5: — e:fLHdrift/Q:e:fLHkiCk:e:fLHdrift/Z + 0O (L3) (20)

14 An integrator that preserves the internal symmetry of Hamilton’s equations.
5 A so called kick code.




where

2 2
Dyt D
Hri - y’
arift 2(1+6)
H _ b b% 2 b2 2 2 b3 3 2
kick = —1$5+5$ +5(.’L‘ —y)+§($ —Bxy) (21)

In other words, each magnet is divided into a “drift-kick-drift”. Moreover,
it can be shown that, given a symplectic integrator of order 2n, one may
construct one of order 2n + 2 by [75]

82n+2 (L) = Sgn (ZlL) SQn (Z()L) Sgn (ZlL) + O (L2n+3) (22)
where
21/(2n+1) 1
= Ty T o1/ear) AT 9 91/t (23)
A fourth order integrator is hence obtained by [69, 70, 71, 72, 75]
e:—LHl: — e:_clLHdrift:e:_dlLHkiCk:e:_CQLHdrift:e:_dQLHkick:
x e c2LHaritt: ot —d1 LHiex: ot —c1 LHarigg: +0 (L5) (24)
where
1 1—2!/3
C1 = S5 a1/aw C2= 75 a1/3
2(2 —21/3) 2(2—21/3)
1 21/3
Note that while the second drift is “negative”
2 (Cl + (32) = 1, 2d1 + d2 =1 (26)

as intuitively expected. The number of integration steps required to correctly
model a given magnet are determined by numerical convergence of relevant
computed quantities as usual, e.g. dynamical acceptance, but with the extra
constraint that the tune should be kept constant. All tracking related to this
work have been done with this model.

16 Classical radiation is a straightforward modification of the kick [93].
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The corresponding Taylor expanded transfer maps are obtained to arbi-
trary order by performing precisely the same arithmetic operations in TPSA.
Computer implementations can therefore benefit substantially by using any
modern object oriented language that supports operator overloading [26]. In
fact, all numerical map and related normal form calculations used in the de-
velopment and cross checking of the presented work have been performed by
a beam line class,'” with TPSA based on a polymorphic number class with
reference counting [27], in C++.

2.5 (Generalized Hill’s Equations)

For the sake of completeness, we also present the corresponding generalized
Hill’s equations. Note however, that they are never referred to in this work.
In any case, they are obtained by combining Hamilton’s equations into two
second order ODEs. From eq. (19) one finds

l‘” + b2 (8) + b% (S)m

= bl(s)é—b?’(s) (xz—y2)+0(3),

1446 146
bQ(S) 2b3(8)
"
—_ - 2
Y'Y 1+5fﬂy+0(3) (27)

3 Linear Beam Optics

3.1 Matrices: Element Description by Linear Sym-
plectic Maps

The linear equations of motion are obtained from eqs. (19) for b3 (s) =0

o = %+0(2),

Pe = bi(s)5— (B (s)+ba(s))z+0(2),

y = 1p—f5+0(2),

Py, = ba(s)y+2bs(s)ay+0(2) (28)

Integration leads to a linear transfer map representing a linear coordinate
transformation

T = &1 (Zo) = Mo 2o (29)
17]. Bengtsson and E. Forest unpubl.

10



where Mj_,; is the well known 4 x 4 transfer matrix acting on the phase
space vector I = [x,pw,y,py]T. Concatenation is performed by ordinary
matrix multiplication

Moy = Mo My (30)

The corresponding 4 X 4 matrices are easily determined by inspection
from the traditional matrix formalism, see e.g. p. 12-14 in ref. [29], based on
Z=[z, 2" y,y]" since from eq. (28)

' Dz ’ Dy
TSy YT 145 (31)

and the multipole components defined by eq. (8) have the momentum de-
pendence
bn

=2 = b ()= s = (1454 (32)

so that
[m]_[mu mlewo]
! - /
T g1 mo1 Moo T 20

These matrices are symplectic

M) — mi1 %] [$0:| 33
[pm] [m21(1+(5) ma2 | L Pxo (33)

MJMT =J (34)
where
0o 1 0 O
7=1% o o ?} (39
0 0 -1 0

a reflection of the structure of Hamilton’s equations as we shall see in section
4.1.

3.2 The /-dependent Fix Point: Dispersion

The linear dispersion function i) (s) is defined as the momentum dependent
fix point of the linear one-turn map

Moonif™ (s0) 6 = 7 (50) 6 (36)

11



where

i (s) = 0 (), (), () 1 ()] (37)

which is determined numerically by a closed orbit finder!® since we have

avoided to expand in §. The fix point is translated to the origin of phase
space by the transformation

—

Z(s) = & (s)+ 7Y (s)d (38)

3.3 Matrix Diagonalization: Global Properties

The one-turn matrix is diagonalized as usual

Mo_sn = A (50) Rossn A~ (s0) (39)
where
_ [Ry (27vy) [0] [ cos¢ sing
Room = [ [0] Ry (27wy)] , Ra(e) = [— sin ¢ coscﬁ] (40)

In the case of mid-plane symmetry'® one finds, after imposing the Courant
and Snyder choice for the phase advance, the unique (canonical) transforma-
tion [86]

so=[50 B ata=[50 8] @

0]  A; (s)
where
1
B.(s) 0 i 5w
A””(S):[— w2 | A0 |0 | @
VBa(s)  /Bals) B2 (s) ?

and similarly for the vertical plane.

The one-turn matrix at some arbitrary point k£ in the lattice is then given
by

Mk—>n+k = MO—)IcMO—mMo__l)k (43)

18The Newton-Raphson method in multidimensions [28] is particularly suitable since
the Jacobian is simply the one-turn matrix.

9No linear coupling. In the general case A (s) will contain off-diagonal elements that
have to be included to correctly determine what can be measured, i.e. the beam size.

12



However, it is sufficient to diagonalize M,_,x to determine the lattice func-
tions at any arbitrary point since

My ik

which leads to%°

= A(sg) RoskRoon Ry A7 (51)
= My kA (s0) Rosn A7 (s0) My, (44)
A (sg) Ry = Mo, A (s0) (45)

They are then computed directly from the matrix elements of A (s;) Ry

using

i (se)

—ay; (sk) a1 (5k) — a1z (s1) az (sg),
a% (sk) + a%z (sk)

v (i) e (o)

Moo () (6)

All linear optics calculations required for this work has been done by this

model.

4 Nonlinear Beam Dynamics

The following treatment is based on a paradigm shift currently taking place in
nonlinear single particle beam dynamics [1, 3, 95]. It was actually conjectured
in a paper by A.J. Dragt and J.M. Finn already back in 1976 [60]

“It also provides a new approach since the connection between
symplectic maps, Lie algebras, invariant functions, and Birkhoff’s
work has not been previously recognized and exploited. It is ex-
pected that the results obtained will be applicable to the normal
form problem in Hamiltonian mechanics, the use of the Poincaré
section map in stability analysis, and the behavior of magnetic
field lines in a toroidal plasma device.”

20Mathematically equivalent to the “Transformation of Twiss parameters” e.g. eq.

[7,100] p. 16 in ref. [29]

13



Indeed, this suggestion has since long materialized.?! Part of the elegance of
the developments along these lines originates from the fact that, rather than
Fourier expand as customary and consequently have to deal with infinite sums
[32, 33],%2 one proceeds more directly to the desired goal. However, these
techniques demand for an elementary knowledge of Lie algebra, in reality
not much beyond the level of ordinary quantum mechanics, appears to have
been a major obstacle for them to gain general acceptance. This is somewhat
unfortunate, because one of the new techniques’ major achievements is to
bring nonlinear single particle dynamics back to the spirit of Courant and
Snyder’s by now?® elementary linear stability analysis [20], based on the one-
turn transfer matrix, i.e. the linear (symplectic) one-turn map.?* To quote
the Bologna school [84]:

“We describe the motion of a particle in the lattice of a hadron
accelerator using the formalism of symplectic maps. We revisit
the Courant-Snyder’s theory and we stress that the reduction to
normal form of a symplectic map is just the natural generalization
of the linear theory.”

In particular after this field’s long detour along more or less successful at-
tempts to apply techniques initially developed, and hence more suitable,
for celestial mechanics.?> Roughly, the classical eigenvalue problem and its
elegant solution by matrix diagonalization, is in a straightforward manner
generalized by the introduction of a recursive algorithm that order by order
transforms the nonlinear (symplectic) map into normal form [84, 86] from
which the global properties then easily are extracted.

This approach is of course mathematically equivalent to the more tradi-
tional Hamiltonian perturbation theory [5], but far more effective when it
comes to carrying out explicit calculations, rather than the customary “In
principle...” for accelerators. Hence with the virtue to free analytical models
from unnecessary and often radical oversimplifications, and at last allowing

21Gee for example ref. [3, 30, 63, 65, 72, 85, 86, 94, 95].

22 (Closed forms actually exists, see for example [34] (but the treatment is incorrect since
the the perturbation of the angle variable was missed).

23The reader with a broad interest is invited to make a comparison with the correspond-
ing developments in the closely related field of control theory over the last 40 years.

24The Courant-Snyder invariant is more generally known as the action variable in Hamil-
tonian dynamics: 2.J, = m (% + (B (8) po + az (s) 2%)] [31].

25Gee for example [32, 33, 34, 35, 36, 37, 38, 39].

14



the accelerator physicist to construct more realistic models. We summarize
our point of view by a modest quote from A. Chao [40]:

“There is a theorem stating when you have only a partial knowl-
edge of the solution to a differential equation and do not know
what to do next, make a Fourier transformation.”

4.1 Lie Algebraic Structure of Hamiltonian Dynamics

Hamilton’s equations can be written in the symplectic?® form?’

T
. o0H
o
where
01 0 0 0 0
-1 0 0 0 0 0
0 0 01 0 0
=10 0 -1 0 0 o (48)
00 0 0 0 1
0 0 0 0 -1 0

Defining the Poisson bracket

siei= P oaein) o o] o

=1

allows one to write the total time derivative for any function f (Z;s) of the
phase space variables and “time” (s) by

df (7; s) of (7;s)

T:—[H,f($;5)]+T (50)
and in the case of no explicit s-dependence
df () .
=—[H
= (1,1 @) (1)

26From greek: intertwined, introduced by H. Weyl 1939.

2Goldstein’s [5] notation is inconsistent since # is a contravariant- and %—I; a covariant
vector as correctly stated, but the latter should, correspondingly, be represented as the
transpose (dual) vector in the formalism. A so called 1-form. See in particular p. 392.

15



which reduce to Hamilton’s equations for f (&) any of the phase space vari-
ables. Note that the Hamiltonian is simply the generator of an infinitesimal
(symplectic) coordinate transformation. The Poisson bracket is invariant

under a canonical transformation, e.g. to action-angle variables [7, 5]

@, 9@z =[f(7:9): 9(J.9)] ;55 (52)
Moreover, it has the following three properties:
antisymmetric
[f(@),9(@)] = —19(2),f(@)] (53)
distributive

[af (Z) +bg (), h(D)] =a[f (Z),h(@)]+0[g (@), h(D)]  (54)
Jacobi’s identity
[f (@), [g (&), h(@)] + [9(2), [ (&), f (@] + [ (@), [f(&),9@)]]=0  (55)

which defines a Lie algebra
If we write the Poisson bracket in the Lie operator form

(@) :9(@) =[f(2),9(2)] (56)

eq. (51) takes the form

df (7) 4
=—:H:
- 7@ (57
It can be shown that the commutator of two Lie operators
/(@) 5:9@) 3= (@) =g(@):—:9(F) = (D) (58)
is homomorphic to the Poisson bracket
{:f(Z)5:9@):} =:[f(@),9@)]: (59)
In other words, that two Lie operators are equal
(%) =19 (D) : (60)
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for any two functions that differ by an arbitrary constant a
f(@)=g()+a (61)

As consequence, the Lie operators also form a Lie algebra.
Since the (functional) map for a Hamiltonian that commutes at different
“times” (s)

{: H(Z, s¢)::H(Z, s1):} =0 (62)

as a byproduct, it can be formally expressed in the form [62]

Mg, =exp(:= [ H(s)ds:) (63)

s0
Roughly speaking, the problem of integrating the equations of motion has
been reduced to algebraic manipulations by taking advantage of the underly-
ing Lie algebraic structure of the Poisson bracket originating from Hamilton’s
equations.

As before, we now assume that each element can be represented by a piece-
wise constant Hamiltonian.?® This is in general a good approximation for
“medium-" and “large rings”. When not, they are straightforward to include
into the formalism [91]. Like for “small rings” or in interaction regions. The
map for an element of length L is then simply

M=

fO—>1

=exp(: —LH :) (64)

4.2 Element Description by Symplectic Maps

Each element is represented by a (functional) map Mg acting on functions

[ (&) of the phase space vector & = [z, Py, Y, Py, 9, ct]T

F(@) = Mg, (@) = f o0& (To) (65)
with composition “o” defined by
f o€ @) = f (Eon (70) (66)

Z8Tgnoring fringe fields.
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where &_,1 (Zo)

Z1 = &1 (%0) (67)
is the corresponding transfer map.?® Concatenation® is defined by

Mg Mg =

€01 12 02

(68)

We remark that it is of fundamental importance to have a conceptually clear
understanding of these steps for the following treatment. For example, since

fo= Mé_;zo.fo_,lf =fo (§1—>2 o 50_,1) = (f o 61_>2) 0 &)1
- MEO—)lMgl_)zf (69)
it follows that (functional) maps are concatenated in reversed order in con-

trast to transfer maps. These maps are said to be symplectic since the cor-
responding Jacobian

€02

061 (Z
Moy = 7&)5;,(%) (70)
0

is a symplectic matrix, see eq. (34).

4.3 Parallel Transport and Lumping of Thin Kicks

The magnetic lattice is now separated into nonlinear thin kicks connected by
linear maps. The one-turn map has then the following formal form [41]

R _ R :Vq: R Vo Vn_1: R
€osn MEO—ne §..¢ € Mﬁn—1—m
_ R R%R —1 R R RZR Va1 —1 R R
- M&o—ne MEO_,lMﬁo—n £, " € Mé‘o_m_l omn—1" n—1-n
= e:M€0—>1Vl:e:M€'0—>2V2:___e:Mf—o—m—lv"_l: o
gO—)n
_ Mz Vi: 4— Mz Vo _ Mg Va—1: 41—
= AO 1./406 ISR 'AO 1.,406 fom2 2 AO lAge foon—1 ! AO lRo_mAn
= Agle:"“e:"f...e:""—“Ro%nAn (71)
where we have introduced
Vi= AMg Vi = RosiAiVi (72)

29A coordinate transformation. Precisely what tracking codes evaluates by direct nu-
merical integration of the corresponding equations of motion. Egs. (19) in our case.
30 Group multiplication.
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since for a similarity transformation

Mel M= = M (73)
whereas for linear maps
Mg .= A" RoLi A (74)

corresponding to eq. (45) in the matrix case. In other words, all the thin
kicks have been parallel transported® to the beginning of the lattice.3? They
can now be lumped into a single thin kick by the Baker-Campbell-Hausdorff
(BCH) theorem for noncommuting operators well known from elementary
quantum mechanics

eteb = ea—l—b-l—[a, b]/2+... (75)
so that finally
Eoon = Aale:h:ROAn-An
= A5 exp( Zv+ Z[f/ Vi) +---:) RoonAn  (76)
z<]
4.4 Map Normal Form: Global Properties
The global properties of the lattice in the general nonlinear case®? are deter-
mined by transforming the map into normal form [86]
Mg’o_m = .A 1 h(J (i)) RO—)nAO ; Aale:fg(j,a):e:k(j):RO_”le:g(j,a):‘AO
— .A e g:e:k:e:Rg_,ng:RO_mAO
— A —(1-Ro—n)g+[k.9]/2+[k—9,Ro—ng]/2+ “RosnAo (77)
so that to first order
RV = kW — (1 = Royn) g0 (78)

31 Compare with a space translation of a spinning top.

32Recall that (functional) maps acts in reversed order.

33In particular amplitude dependent tune shift, chromaticity and the lattice functions
parametric dependence on § and multipole strengths. The “unlocking of Pandora’s box”
for reasons that will become clear in the following.
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To solve this equation h has to be decomposed into two parts: one part
independent of the angle variables®® and the remaining

WY = high (7) + bt (7,9) (79)
so that
_ 1 -
(1 — p@) m__ - M
k - hKer (‘]) ’ g - 1— RO—m h’Im (‘]: ¢) (80)
which leads to
e:h:RO—ﬂL — 6:_g(j’$):e:k(j):R()_wle:g(j’a):
L
— 1 h(l)---:
X e 1-Ro—p Im (81)

where [7, 5] = [Jy, 0, Jy, ¢y are the action-angle variables. This can strictly

speaking only be done for integrable Hamiltonians.?® In other words Hamil-
tonian systems without chaos. This is typically far from reality in the case
of accelerators. However, the main goal of accelerator design, from a math-
ematical point of view, is to determine a design with a fix point surrounded
by regular motion over an extensive volume of phase space. In other words,
to avoid chaos. It is hence reasonable to assume that if one expands in some
smallness parameter, e.g. the multipole strength, and brings the map pertur-
batively into normal form, the corresponding power series expansions should
be able to model the dynamics in the regular regions of phase space. How-
ever, it can be shown that these expansions are only semiconvergent.?® In
any case, such a hypothesis can and should of course always be tested against
tracking.
The tune shift is then easily obtained from the generator & (7) by

Lk0) ,,  1ak0)

_ __ 2
v Y 2 0J, (82)

2r OJ,
34The so called kernal of Ro_,n, i.e. h for which Ro_,h (J) = 0.
35Hamiltonian systems for which the motion is quasi-periodic and lies on a n-dimensional
invariant torus in the 2n-dimensional phase space.
36Generally known as the “small denominator problem”.

20



whereas the canonical transformation exp (: g :) determines the distortions
of the invariant torus. For example

Boi + ABy = <€ Rn—n-Ax> —ﬂm<e Rt >$
= Ba(1:9:+) Rusia®) (83)

where “()7” denotes averaging over the angle variables [¢;, ¢,].

5 Application to Sextupoles

In the following will work out analytical formula for various dynamical quan-
tities as expansions in the multipole strength. Order will hence refer to order
in multipole strength and NOT order in the phase space variables.?”

5.1 Lie Generators: The Driving Terms

The vector potential for a thin sextupole at an arbitrary location s; is

q bs; 3 2
Vi=—A,(s5) = —— (2" — 32 84
L(30) == (a* = 3a0?) (59
Noting that

one finds

%Az ($3 - 3xy2) = . (\/@SE + nm)é) - (\/Fx + 77561)5) ﬁyzy
= \/@(ﬂm) $52+ 2{2 5 \/Eﬁyzmy

+ (Baiz® — Byiy ) nii'd + 0 (6%) (86)

3TFor example, a second-order achromat refers to a single-pass system for which all
second order terms in the corresponding Taylor expanded map have been zeroed. This
corresponds to that the first order effects in sextupole strength have been canceled. We are
in the following, from a general point of view, attempting to design a circular accelerator
based on a magnetic lattice corresponding to a third-order achromat in the single pass
case [64].
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Introducing the resonance basis

hE = \/2J,eF% = /2, cos ¢, + ir/2J, sin ¢, = T F ip, (87)

in other words the eigenfunctions of the rotation operator R

RisihE = Risj\/2J5e5% = \[2J,e*PxHtinin) = eXibizie pt (88)

Correspondingly
1
p— _— — + -
T = /2J,c08 ¢, = 5 (hx +hw) ;
. I _
Pr = —y\/2J;sin ¢$ = _Q_i (hz - hx) (89)

In the spirit of egs. (41,65-67) we obtain

RO—)i-Ai% (.’L'3 — 35Cy2) = RO—)’i [\/@(775))2-@52 + = 3/2 3 \/@ﬁyzxy

+ (Buiz® = Byy?) ni'8] + O (62) (90)
and
Ro_)ix = %Ro_n (h; + h;) = % (hiei“” + C.C.) s
Rooit® = ERH (nf + h;)Q _1 (h,;?emwi +ec +4],),
RO_M'LC?’ = é (h+3 i3 + 3h+2h e“‘“ 4+ c.c. )
Ro%ixy2 — % [ +h+2 ( um+2uyl) +h+h 262(um QHW)
+ 2hf hihy e 4 c.c ] (91)

Collecting the terms we find that the Lie generator : A :, the nonlinear driving
terms, has to first order the following generic form in the resonance basis

WY = N7 hghfthg PRt b6 (92)
7=n
where T = [iy, iy, 13, 14, i) , m =4y + 4y + i3 + 44 + i5. It may be interpreted

as a mode ezrpansion with each mode driving betatron- or synchro-betatron
resonances and are summarized below.
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The algebraic manipulations required to push on to the second order are
straightforward and preferable automated by computer algebra. The BCH-
theorem eq. (76) was implemented in MATHEMATICA3® to automatically
grind out the generator to second order for an arbitrary multipole component.
The resulting second order terms have the form

M = - Z Vi, V]
z<]

1 Z h h h+(l1+]1)h (Zz+j2)h+(13+J3)h;(i4+j4)6i5+j5 (93)
TEI 72

5.1.1 First Order Chromatic Terms

Quadrupoles will also contribute since from eq. (32)

Vs say (B -v) = 2= (@) +0 () o

There are two terms that are independent of the phase variable

hiioor = ié [(b2 )i — 2(b3L)i77g)] Bei + O ((52) ;
N
hom =~ 3 [(0oL); — 2050),0Y) i+ O () (95)

=1

which drive the linear chromaticity, the initial reason for introducing sex-
tupoles into the lattice. The remaining are
. 1Y

haooor = hoaor = 5 3 [(boL); = 2(bsL)inty] uie™ + 0 (5°)

.
—

*

M-

hoozo1 = hggo1 = g [(b2L)z’ - 2(b3L)i77$)] 5yiei2uyi +0 (52) ’
i=1
N
h10002 = h81002 = %Z [(bgL) (b3 ) 7'];” ] nmz \V /Bmz Ui +0 (53) ( )

=1

where * denotes the complex conjugate. hogger and hgger drive synchro-
betatron resonances and generate momentum dependence of the beta func-
tions, whereas higge drive second order dispersion. Unfortunately, this is far

38L,. Rivkin priv. comm.
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from the end of the story. As we will see in the following, these terms are
followed by a whole swamp of undesirable terms: “the unlocking of Pandora’s

)

box”.

5.1.2 First Order Geometric Terms

*

1 .
hatooo = higg00 = ) > (bsiL) 52{261““,
i=1

. 1 X o
h30000 = h/03000 == _ﬂ (b3zL) /82{2613ﬂw1,
i=1
hiotio = hoii10 = ZZ(b:ﬁL) i Byt
i=1
. L 12 0 i(pai—2pyi)
hioo20 = D10 = gZ(bm‘L) Bri Byie"Heim i)
i=1
. 1 X 124
hio200 = hgigeo = 3 Z (bs; L) B, ﬁyiez(umwuyi) (97)
i=1

These terms drive five different betatron modes with the frequencies:
Vg, 3Vg, Vg — 2Uy, Vg + 21, (98)

which appears as the well known first order harmonics in the corresponding
Fourier expanded expressions in the old-fashioned approach.

5.1.3 Second Order Chromatic Terms

The terms independent of the angle variables drive the second order chro-
maticity. But the related formula will be derived by a simpler approach, so
they are not needed in the following analysis. The remaining terms drive the
synchro-betatron sidebands of the first order resonances. However, since the
first order betatron modes have to be canceled, they corresponding sidebands
are expected to be weak and will be ignored in the following analysis.
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5.1.4 Second Order Geometric Terms

The terms independent of the angle variables are

B 1
g,Ker _6_4

1

+ 16 (2h21000h01110 + P10020R01200 + P10200P01020) (25) (2Jy)

1

~ 6l (4h1o110h01110 + 1002001200 + P10200R01020) (2Jy)2 (99)

and drive amplitude dependent tune shift. These effects may be viewed as
originating from an amplitude- or momentum dependent shift of the closed
orbit in the sextupoles. The remaining terms are

(hfhj)g,lm

1

= 6_4 |:2(’7130000}312000)2,,9lc + (h30000h21000)4u2] (2J$)2

(hth3) (3ha1000 12000 + Pi30000h03000) (2)”

1
+ 64 [2 (h30000ho1110 + h21000h 10110 + 2P10200710020) 9,
+ 2 (h10200h12000 + P21000h01200 + 2h10200P01110 + 2}7»1()110}101200)2,,11

+ (h21000/10020 + P30000 01020 + 4h1o110h10020)2yz_2uy

+ (h30000R01200 + P10200R21000 + 4h10110h10200)2uz+2uy] (2J,) (2Jy)

1
+ 61 [2 (h10200P01110 + h10110h01200)2,,y + (h10200h01200)4,,y] (2Jy)2

+ c.c. (100)
and drive 8 different betatron modes with the frequencies:

2uy, dug, 2uy, 4vy, 2, — 2vy, 20, + 2u, (101)

We note that the second order modes appears due to cross terms of the first
order modes.

5.2 Phenomenology: Lattice Perturbations

Sections 5.1.1-5.1.4 presented the driving terms, i.e. the Hamiltonian. We will
now compute the corresponding perturbations on the linear lattice functions.
In other words, determine perturbative solutions®® to the nonlinear equations
of motion.

39Expanded in the multipole strength.
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5.2.1 Linear Chromaticity

The linear chromaticity is obtained directly from hggr

so that
1 N
&) = X [0L); - 20sL), N | Bris
o o Ly W
&' = E;[ L); —2(bsL )ﬂm’]ﬁyz‘ (103)

5.2.2 First Order Perturbations of Lattice Functions

The one-turn map with a dipole perturbation b,, at the end can be written

Mg, = Mg 6" = A Roon o™ = Ay Ry e 0% Ag
b1 (/Bana+n$i o
= A;'Rome ( Pantt )_,40 (104)

More generally, the map with a dipole kick at an arbitrary location j observed
at location 7 is then

= M3t

é—>n+i fj_n fj—>n+] g-;—)z
b1 (/Bajztnté
A lfR’J—nRJ—mHe 1]( P )RJ—H‘A (105)

which corresponds to eq. (43) in the matrix case. Using egs. (80) and (81)
to transform into normal form gives

1 1
O . S ¢ S N /- 2
g m 1 ﬁm z
- Rj—mﬂ' ' 1 - Rj—mﬂ' ’ !
b 1 _
= VBt (b +hy)
j—ntj

b e ht
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and
1 o
RjoiAir = \/ BriRjsiT + Nyid = 5\/ Bai (h+€ Haimi + C-C-) +neid (107)
So similar to eq. (83), the change of the closed orbit is given by
Leod,i = <€:g:'R,j_>i.Ai$>$ = <(1+ g + - ) RJ_)Z.AZ.’E>$

- % €08 (g i — TV5) + 000, 0> ] (108)
where we have used
B ] =20 [ptt] = [hm et =0 (109)
The case ¢ < j is treated similarly and the general case is summarized by

_ VB Ny 5 oF
Tcod,i = Z blj ﬁw] COS (|:u':v z%]| 7”/36) + Nxi (110)

2sin Ty ;

The second order dispersion 7(? is defined by
@ _ lazxcod,i (9) _ Ongi (6)
= T e |, T 9 |,

Taking into account that the d-dependence of the multipole component eq.
(32) leads finally to

- N
R ST o8 /(W7 RO C)

2sin (1v;) =

X 1155/ Bag €08 (| thisja| — T02) (112)

The same algebra can now be carried out for any multipole component
and in particular a quadrupole error by,. Defining

(111)

1 0 Ti 1 0 i
Bg(m) = 586 ﬂgSz) = 56(35/ 5o (113)
for the beta-beat and eq. (83) leads similarly to
N
ﬁg) - 2smﬂw217ﬂ/z ; [ ~2(bs1) 77;?)] Baj 08 ([2hinja| = 2ma),
N
By = mf@gwy Z [(b21); = 205 2) 13| By cos (12p1imss0] = 27) (114)
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5.2.3 Correction of Perturbed Lattice Functions

Note the similarity of formula (112) and (114) to (4.7) in ref. [20] which
describes closed orbit distortions due to magnet tolerances.** By analogy
then, second order dispersion and beta-beat may be corrected locally in the
same manner as closed orbit distortions whenever desired. In particular, by
solving the linear system

AT =b (115)

For example in the case of horizontal beta-beat, the matrix coefficients in
the correlation matrix A for closed orbit distortions

aij = Fe (o ) 08 (| ftisjz| — TVg) (116)

is simply replaced by

B:m'/Bwj
_ Pilzj 2
2sin (27v,) co8 (‘ Himja

— 271, ) (117)

aij =

whereas the undetermined dipole kicks b;; in the vector T are replaced by the

sextupole kicks —2(bsL) jng-), and the right hand side by the negative contri-
bution to the beta-beat at each observation point 7 due to the quadrupoles

N
_QSln 2711/56 ; );5j €08 (12tisja| — 2mvs) (118)

However, engineering problems described by such systems of linear equations
tend to be overdetermined and can only be solved in a least-square sense.
Preferably by singular value decomposition (SVD), see section 6.2.1.

5.2.4 Second Order Amplitude Dependent Tune Shift

These formula were derived in the author’s thesis [38] by application of time
dependent perturbation theory [5] and computer algebra. The work was
inspired by a first order treatment based on variation of constants by B. Autin
in his pursuit of a sextupole scheme for ACOL at CERN, who also rederived
them later [39]. They later prompted J. Irwin at the SSC to once again

40The integral is replaced by a sum in the case of thin kicks, and

y(s)=n(s)B(s), f(¥) =B () F(s), & = v
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rederive them, but this time along the lines outlined by E. Forest [41, 42].
In fact, MACSYMA programs were developed to automatically generate a
few thousand lines of FORTRAN code to form an analytical model able to
predict the short term dynamics for the SSC. Simply put, hours of tracking
on a CRAY were replaced by a few minutes of numerical evaluations of an
analytical model on a VAX [30].

vy _ 1 3/2 3/2
aJ, 16w ZZ (bs L) Pek
7j=1k=1
3cos (|pjske| — ) €08 (|31 50| — 37V)
sin (mvy) sin (37vy) ’
ovy 81/y
aJ,
N N
_ 2B, cos (|/J/J—>k :c| 7TVa:)
- lel b3 b3 YV Bz]ﬂzk yj [ sin (7Tllz)

Byk €08 [|jshe + 2ptjky| — T (Vo + 20)]
sinm (v + 2vy)

4 Buncos [Ljoke = 20jk,y| — 7 (V2 — 2vy)]
sinm (v, — 2vy)

’

v 1 4cos (|pj—ke| — V)
O—JZ = _167122 (b3L);(bsL) Mﬂwﬁyk[ =

et sin (7vy)
4 o8 (1jske + 205 5ky| — 7 (V2 + 21)]
sinm (vp + 2vy)

+ Cos [|/J/.7_)k7$ _ 2/“1’.7—”‘7’1/' -7 (Vw — 21/?/)] (119)
sinm (v — 2vy)

5.2.5 Second Order Chromaticity

The amount of algebra required to derive these formula can be reduced con-
siderable by taking advantage of the fact that the driving terms were, at least
in theory, not expanded in §. The second order chromaticity may hence be
calculated by considering the parameter dependence in the formula for linear
chromaticity (95) with respect to §:
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(2) 1827/w (6) _ 1361/1- (6)
@ 2 02 |,_, 285 80 |,
N
1 a(bsL); L), ],
- _87r;[ R e

X 0B }

" ; {2(b3L)i%5“' — [@2L), 255 L)inY] S (120)

6=0

Since the multipole components have the § dependence given by eq. (32) we
obtain directly

1 1
(2) — _Zg) —

> {20s1) 0 B2i = [021), - 205 D)0 ] 7,

i=1

N
> {20s0)5% By + (o), — 20D B} (121)

i=

1

2 _ 1 1
S

The parameter dependence of the lattice functions is computed by formula
(112) and (114) or numerical differentiation

@ _ 1PTw(®)) 10109
BT T |, T2 @ |,
_ %xcod (h) — 2:5002 50) +Zeod (<R) (#2)
_ %ﬁx(h) ;:x(_h)+0(h2),
B = g_? - B (h) ;hﬁ (=h) +0(®) (122)

Alternatively, £ may evaluated by direct numerical differentiation

—
(o))
[ )
<
—~
=%

€D )

DN = N = N
>
[\

§(h) —&(=h) L0 <h2) (123)
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6 Application to the Swiss Light Source (SLS)

At this point, we have prepared ourselves with a general linear model*! for
beam optics, based in particular on egs. (29), (30), (33), (36), (38), (39),
(45), (46). Moreover, a nonlinear model based on the expanded Hamiltonian
eq. (17), the multipole expansion eq. (8), and numerical evaluation (tracking)
using a 4th order symplectic integrator eq. (24).*> More generally, a C++
implementation®® allows us to perform the same numerical evaluations in
Truncated Series Algebra (TPSA),** and extract the corresponding Taylor
series one-turn maps to arbitrary order. A numerical implementation of the
normal form algorithm also based on TPSA,* allows us to bring these maps
into normal form eq. (77) and hence self-consistently® extract the global
properties of the lattice to arbitrary order. Finally, an analytical model
based on egs. (71), (96), (97), (99), (100), (103), (112), (114), (119), (121)
allows us to get a clear insight into the parameter dependence of the nonlinear
driving terms and related dynamical quantities. Note that all the analytical
results were obtained by purely algebraic manipulations, i.e. we never had
to explicitly integrate the equations of motion eqgs. (19). These formula have
also been coded for fast numerical evaluation in terms of the linear lattice
functions. In particular, Simpson’s rule [28]

A:/Ohf(x)da:: % (f(0)+4f (g) +f(h)> +O<h5%> (124)

has been used to compute the contribution from quadrupoles, whereas one
thin kick is sufficient to model the sextupoles in the SLS lattice. For efficiency,
numerical differentiation according to formula (122) has been used to obtain
the d-dependence of the lattice functions, in particular 9n/0é and 93/96. So,
we are are finally ready to very carefully but deliberately open “Pandora’s
box”.

4INot assuming mid-plane symmetry and not expanded in 4.

42The related computer implementation is based on H. Nishumura’s idea to “modify”
N. Wirth’s Pascal-S compiler/interpreter [43, 44] enabling us to use Pascal as command
language.

43The underlying beam line class was designed in collaboration with E. Forest.

44By interfacing to a FORTRAN library originally developed by M. Berz at SSC.

45By interfacing to a FORTRAN library developed by E. Forest together with the author.

46Using the same dynamical model for analytical- and numerical studies. In particular
when lattice errors are included.
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6.1 Elementary Design Considerations: Magnetic Lat-
tice Symmetry

As any modern high performance synchrotron SLS has a magnetic lattice
with very strong focusing and consequently large natural chromaticity.*” This
implies that the beam will occupy a fairly large area in the tune diagram.
Since magnetic tolerances are unavoidable,*® resonances will by definition be
excited and affect the performance. Sextupoles are therefore added to cancel
the leading order (linear) contribution. However, as we have already seen,
this is far from the end of the story. In spectrometer design, high performance
imaging systems are traditionally designed by imposing symmetry to cancel
undesirable aberrations. There are essentially two different approaches [45].4°
The first, see e.g. [96], is to pair sextupoles with a matched phase advance of
7. In other words, to group the sextupoles in pairs separated by the linear
transfer matrix

(125)

-1 0
M1—>2 = [ ]

0 -1

By such an overall arrangement, one may with two independent families of
sextupoles cancel the linear chromaticities egs. (103) driven by hii90; and
hoo111 egs. (95), and all the first order geometric modes egs. (97). However,
this pattern may potentially systematically excite the first order chromatic
modes hagoo1 and hgooo1 €gs. (96), in fact on a level comparable to hiigo1
and hgo111- Since they drive the beta-beat eqs. (114), they may generate
a substantial amount of second order chromaticity eq. (121). Furthermore,
the relatively wide separation of the sextupoles tend to make them relatively
strong which may enhance the second order effects. In any case, practical
space limitations makes such an approach academic for SLS. One may con-
sider interleaved schemes, if care is taken to control the cross talk between
the sextupoles, i.e. the second order terms [95].

The second approach is to design a unit cell, repeat it four or more times
to create a macro cell, and adjust the total phase advance to 27. The linear
chromaticity and all the first order chromatic- as well as geometric modes
are then canceled at the end of the structure. This approach was pursued

47The natural chromaticities for SLS are: £ ~ —75, &) ~ —22.

480n a fundamental level, pure magnetic dipoles and quadrupoles are inconsistent with
Maxwell’s equations.

49Brown is using order defined in terms of phase space variables.
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successfully for the early SLS lattice. A lattice was constructed by repeat-
ing a unit cell with a phase advance of about v, = 0.4 and v, = 0.1 5
times which and adding straight sections leading to a lattice with reasonable
dynamical aperture. In particular after enlarging the number of sextupole
families from two to six [10, 11]. However, the author could later prove this
result an artifact caused by incorrect powering of the two chromatic families.
Roughly, since the unit cell had a sextupole at each end, the first and the
last sextupole of the macro cell should only be excited with half the strength.
Indeed, the same performance could be obtained with only the original two
chromatic families [12]. 4 phase trombones and more sextupole families still
had to be added though, to be able to implement the desired flexibility of
the lattice from a dynamical point of view [12]. This required 33 sextupole
families to avoid breaking the symmetry of the lattice. A result that reflects
a fundamental problem with this approach: how to introduce straight sec-
tions. Since the quadrupoles in the straight sections will also contribute to
the natural chromaticity, their contribution has to be canceled nonlocally®°
by the chromatic sextupoles inside the macro cell, leading to a violation of
the nice cancellation of the first order terms at the end of each macro cell.
Obviously, one should at least maintain the global symmetry of the lattice to
avoid unnecessary excitation of systematic resonances. Later, a lattice based
on a TBA-structure was suggested, pursued and eventually finalized [13, 14].
The following presents work related to a systematic design towards its sex-
tupole scheme. The importance of lattice symmetry can be appreciated by
a glance at the formula for the first order geometric modes egs. (97). It is
clear that e.g. the sine terms of the driving terms disappears at any point
with mirror symmetry in the lattice. It would in general take 5 additional
independent® sextupole families to achieve the same result.

6.2 Linear Vector Spaces: 10 First Order Design Gauges

The first order generators for the geometric modes eqs. (97) and the chromatic
egs. (96) are sums of complex numbers. The contribution from each element
may hence be represented as a vector in the complex plane. Include the
horizontal- and vertical chromaticities and we end up with 18 numbers that
ideally should be zeroed. However, this number is reduced to 10 at points

50Unless one can tolerate a sufficient amount of dispersion in the straights.
51Linearly independent from existing families, something far from trivial as we shall see.
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with mirror symmetry in the lattice. Since these terms are linear in the
sextupole strength, we have a linear system of equations

AT = (126)

where A is a 18 x N, matrix with the matrix elements

agj ~ Z ﬁ;(czlc1+12)/2/61523+14)/2(773(c}c)) 562[(11—12)ka+(23—14)uyk] (127)
kEN;
T _
for Ny, sextupole families, T = [(bSL)1a"‘,(b3L)N,, ] and b is a vector
3

containing the excitations of the driving terms due quadrupoles

Ny L . s e s
b; ~ Z (bQL)kﬂg(;lez’)/?ﬁ;lkev*'M)/? (ngc))%ei[(n—Z2)Mmk+(13—l4)ﬂyk] (128)
k=1

This system is likely to be overdetermined so we will use Singular Value
Decomposition (SVD) to determine a solution in a least square sense.

6.2.1 SVD: How to Deal Effectively with Linear Equations

There are two essential aspects well worth knowing about matrices from a
mathematical point of view: eigenvalues and singular values. The eigenvalue
point of view is effectively both the foundation and beauty of the Courant
and Snyder paper, and linear control theory in general for that matter. The
singular values on the other hand are defined by the so called singular value
decomposition (SVD) of a M x N matrix A into the product [28]

A=UxV! (129)

where U is a M x N column orthogonal matrix, U a N x N orthogonal matrix
and X a NV x N diagonal matrix with elements > 0

o1 0
o (130)
[ 0 O'n‘|

where o; the singular values. The inverse is then simply

At=vy iUt (131)
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where

L 0
vl = [01 . ] (132)
0 -

The rank of the matrix is given by the number of singular values # 0. For
numerical calculations it is useful to introduce the condition number defined
as the ratio of the largest singular value to the smallest. A problem is said
to be ill-conditioned if the reciprocal of the condition number is close to the
floating point precision of the computer. The system of linear equations
tends to be overdetermined in practical problems. In other words, one is
dealing with a linear optimization problem

AT =b (133)

such that the number of free parameters x1,...xy are less than the number
of constraints bq,...by. One may then attempt to solve approximately, in
particular in a least square sense

X = |4z -3 (134)

All that is needed for constructing the corresponding inverse matrix is to per-
form a SVD and replace reciprocal singular values above a certain magnitude
by zero

— = 0 (135)

This replacement incidentally also gives a unique solution with the smallest
magnitude of |Z|” for underdetermined systems!
Note that the nonlinear case

f(@=a (136)
may be treated similarly by taking a local point of view and linearizing
f(@o+ A7) = f (Ty) + MAT + O (2) (137)
where M is the Jacobian
gﬁ e gi
8_ — x1 TN
oz or N

like Newton-Raphson in multidimensions.
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6.3 A Sextupole Scheme for the TBA Structure

So, by changing to a top down approach, a structure based on 12 TBAs
and 12 straight sections was eventually found to potentially meet the tight
requirements on the linear optics and, in particular with a sufficiently small
emittance. A required introduction of at least two long straight sections
could potentially reduce the periodicity to 2. One may intuitively argue then
that high performance implies local correction, since only then is there little
opportunity for the nonlinear perturbations to accumulate. Some preliminary
studies on a lattice with four long- and 8 medium straights proved it feasible
to cancel all the first order terms over three TBAs with 9 sextupole families, 4
chromatic and 5 geometric, and by tuning the phase advance close to Ay, =
4.75 and Ay, = 1.75 over 3 TBAs, i.e. from the center of a long straight
section to the next. This choice of phase advance led to cancellation of the
chromatic modes hagoor and hgozo1 over two such blocks. The constraints on
the phase advance occurs since the 9 sextupole families are not independent.
In fact, a Singular Value Decomposition (SVD) of the corresponding system
of linear equations, see section 6.2.1, shows that the rank of the system is
only 8; for 9 constraints: horizontal- and vertical chromaticity, 5 geometric-
and 2 chromatic modes. This can be understood from eqgs. (95) and (96). The
driving term for horizontal chromaticity h;1991 becomes linearly dependent to
the chromatic mode hogggr when chromatic sextupoles from the same family
are separated by Ay, ~ 0.5. This is hard to avoid in a strongly focusing TBA
cell, and was also the reason to introduce phase trombones in the earlier
lattice. Short straights with a small value of the beta function, so called
mini-betas, eventually also had to be accommodated. Since they tend to add
a considerable amount of “nonlocal” chromaticity, their introduction into
the lattice leads to a corresponding degradation in dynamical acceptance. In
fact, after the first order terms have been canceled, the dynamical acceptance
scales roughly with the square of the relative chromaticity

’\_gm ’\_5
f:u:V_w; §y:V_Z (139)

as one would naively expect if we are indeed limited by second order terms.
The final lattice consists of a block with 1 long-, 1 medium-, and 2 short
straights and a TBA between each which is repeated 3 times. In other
words, a mirror symmetric lattice with periodicity 3. Furthermore, it has 12
sextupole families, 3 chromatic and 9 geometric, and a phase advance close
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to Ay, = 3.5 and Ay, = 1.5 over 2 TBAs. The rank of the corresponding
system is of course 8 as before.

Note that the sextupoles should at least naively be placed where the
linear optics functions have weak J-dependence to avoid to generate second
order chromaticity, see eqs. (112). Furthermore, the beam position monitors
should be placed close®® to the sextupoles, since an orbit in a sextupole
will give a gradient error by feed-down which will globally perturb the beta
function and phase advance, effectively reducing the symmetry of the lattice
resulting in reduced performance. In other words, as long as the orbit is
centered in the sextupoles dipole and quadrupole errors will be harmless to
the dynamical acceptance, but the physical aperture is of course reduced
since the equilibrium orbit is in general no longer at the center of the beam

pipe.

6.4 Confronting the Second Order: Another 13 Design
Gauges?

After having gained control over the first order terms, we are ready to con-
front the second order. An inventory gives from eqgs. (100) 8 second order
betatron modes, (119) second order horizontal- and vertical chromaticity, and
(121) 3 terms for amplitude dependent tune shift. A total of 21 terms and
13 at points with mirror symmetry. Since the first order terms does not have
to be strictly canceled, one may attempt a numerical optimization based on
a merit function and attempts to determine suitable weights by tracking. In
particular by the corresponding short term dynamical acceptance. However,
one soon finds that the first order terms have to be fairly well canceled and
that the second order terms are fairly stiff. Note that the second order modes
appears due to cross terms of the first order, and one may conclude that local
control of the first order terms is essential for controlling the second order.

52Tn terms of phase advance.
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Figure 1: Zeroing of the First Order Modes.

6.5 So Where is the Cash?

Figure 1 shows a plot of the cancellation of the driving terms in the center
of the medium straight. A circle indicates the residual amplitude. The
chromatic mode hgyyo1 is weakly excited due to other constraints related to
the linear optics. Tracking for the initial conditions J, = 3.77 x 1075, ¢, =
0.0, J, = 2.07 x 10 %, ¢, = 0.0 is shown in Figure 2. The unperturbed tunes
are

v, = 7.0800, v, = 2.6400 (140)
Fourier analysis of the horizontal and vertical position gives the actual tunes
vy, = 7.0906, v, =2.7189 (141)

Fitting a linear combination of the betatron frequencies to the spurious peak
in the horizontal plane

v =1, — 2, = 1.6528 ~ 2 — 0.3471 = 1.6529 (142)
and similarly for the vertical
V=20, — v, = 1.1462 ~ 1.4624 (143)
It can be shown that it is a signal of the (amplitude) mode [38]
2, =20, =k (144)
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confirming that the first order modes have indeed been canceled. Figure
3 shows the chromatic effects where the solid line represents the computer
model and the dashed the map normal form, i.e. perturbation theory. The
linear horizontal chromaticity has been made positive to reduce

b= (0 +EP5+-)6 (145)

rather than £(1). However, other considerations like the head-tail instability
may impose other constraints. A numerical map normal form applied to
an 7th order®® one-turn map extracted by using a symplectic integrator and
TPSA gives directly
B (6) = 3.32+8.880 — 6.18 x 10%6% + 8.72 x 10°5*
+2.61 x 10°5* — 1.04 x 1076° + O (4°),
B,(0) = 6.05+9.17 x 10'6 4 2.40 x 10%6% — 8.19 x 10%6®  (146)
— 1.43 x 10"6" + 6.80 x 10°5° + O (4°) ,
& (6) = 7.08+1.500 4+ 1.35 x 10'6% — 5.49 x 10%5*
+1.19 x 10%* — 2.77 x 10%6° + O (4°),
& (6) = 2.64—5.06x 10775 +7.086° — 7.61 x 10'6°
+9.96 x 102" — 1.06 x 10%6° + O (4°) (147)

whereas a least square fit to the data gives

*

B, (6) = 3.27+1.32x 10'0 — 3.43 x 10%6* — 5.29 x 10°5*
+1.19 x 106" — 1.52 x 1076° + O (4°),
B, (6) = 6.05+9.16 x 10'6 + 2.44 x 10°6* — 7.88 x 10°4°
—1.82 x 10%6* + 4.82 x 10°6° + O (56) ,
£ (0) = T7.08+1.516+1.34 x 10'6* — 5.75 x 10%§°
+2.46 x 10" — 2.83 x 10%6° + O (4°),
£, (6) = 2.6443.99 x 107%0 + 7.146” — 8.55 x 10'6°
+1.03 x 10%* — 5.50 x 10%° + O (4°) (148)

53Tn the phase space variables.
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We conclude that perturbation theory works reasonable well within the bound-
ary of regular motion. The poorer agreement in the horizontal plane is re-
lated to the fact that the linear optics is highly pushed in the horizontal
plane whereas the vertical plane is more relaxed. Figure 4 and 5 shows the
d-dependence of the lattice functions around the lattice. We are plotting vs.
Vg, 2V, and 2y, since according to eq. (112) and (114) they are modulated
with these frequencies. The dynamical acceptance with synchrotron oscilla-
tions and magnet misalignment errors® is presented in Figure 6. Indeed, by
placing the BPMs close to sextupoles we essentially recover the dynamical
acceptance.

7 The Experimentalist’s Approach: In the
Control Room

This section has been included for pedagogical reasons. In particular for

followers of: “Everything in the control room is linear”,% which clearly has

more to do with definition than observation. For a model driven control

54 An input file to impose correlations due to girders was written by A. Streun.
55There is a saying: “When reality outperforms our models, we instinctively prefer to
ignore it rather than actively seek out how to raise our standards.”.
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approach and related high precision measurements of the linear aspects, see
for example ref. [38, 46, 47, 48, 49, 50].

7.1 The Perturbed Betatron Motion

One may represent a N-turn map as the one-turn raised map to N-th power.
It is easily obtained from the one-turn map in its normal form eq. (77)

—_ N
My = A (TR ) Ag
— _ N —
— Aale:—g(J,¢): (e:k(J):RO_m> e:g(.],d)):AO
— Aale:_g:e:Nk:Rév_me:g:Ao (149)

The perturbed betatron motion can now be determined. For example, the
betatron mode 3v, driven by hsggg in formula (97) has as generator

h(l) = h30000h:3 + c.c. = A300006i¢30000 h:g + c.c.
= A30000 [(h:3 =+ C.C.) COS (¢30000) + Z (h;t?’ —_ C.C.) sin (¢30000)]
= 2430000 (2J2)*"* cos (3¢ + B0000) (150)

where we have introduced
hao000 = Asopooe’ > (151)
The perturbation of the action-angle variables [.J,, ¢,] is given by

Jo(N)=MT oy ¢ (N) =M &, (152)

fO—)n
and it follows that
Jw (N) = eNkR(Z)v—m (1+ tgt ) AOJw
1
= MRY, (1, ) T
A

h+3ez¢3uw
_ 3ve N . z bt 2
By using
hif®, hihy | = i6ht? (154)
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we find in particular

343, (2J,)%*
N) = OB \2dz)
Tz (N) Jat sin (37vy)

+0 (83) (155)

More generally, applying the same analysis to all the first order modes egs.
(97) gives

cos [¢3y, + 3 (¢z — TVz + N271y)]

Agnoo (2J5)%?

sin (7vy)

A V2J,2J, ~
+ 2 Y cos (¢10110 + ¢ + N27TV;¢)
sin (7vy)

J.(N) = Jo+ cos (&21000 + ¢ + N27TV$)

3 As0000 (ZJz)3/2
sin (37vy,)

A10020v/ 252, ~
-2 N7 (v — 2
sin [ (v — 23)] cos [¢10020 + ¢ — 20, + N27 (v yy)]

Aro200v/2J52J, ~
sin [ (vg + 20)] [¢10200 + ¢y + 2¢, + N2 (v, + 2yy)]

+O(b§),

2A10020\/2Jz2<]y -~
Jy (N) = Jy — sin [71' (l/cc _ 21/y)] COS [¢10020 —+ ¢:v - 2¢y + N27 (Vx — 2l/y)]

2A V2J,2J, ~
10200 Y COS [d)lOZOO + ¢z + 2(]53/ + N2rw (Vac + 2Z/y)]

COS [é\goooo =+ 3 (Qﬁz —+ N27T1/$)]

sin [7 (vg + 2vy)]
~0 (1) (150
where
Bijkio = Dijir — (1 — ) v + (k — 1) ] (157)

7.2 DFT: Elementary Signal Processing

This section has been included to honor E. Asseo, a by now retired, electrical
engineer in the LEAR group at CERN with a profound understanding of the
Fourier transform and a deep passion for his programmable HP-calculator.
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In fact, the whole experimental part of the author’s thesis and related im-
provements of the stability of LEAR [38, 55, 57, 58] would not exist without
his “Papy-Q” system (papy: french slang for grandpa) [56]. The versatility
of his interpolation techniques for signal processing includes the conceptual
design of the former SSC, see ref. [30], p. 119 [95]. Indeed, we are delighted to
find that his work is currently being rediscovered [59]. The discrete Fourier
transform (DFT) is defined by

1 N-1

Xp = > ape PN =0,1, 2, -, N1 (158)
N k=0

where N is the number of samples, whereas Fast Fourier Transform (FFT)
[54] is a fast algorithm to evaluate the transform for cases where N = 2% k =
integer. The amplitude distribution for a peak centered around the normal-
ized frequency v is given by

sin [7 (k — Nv)]
7 (k — Nv)

Ay =

‘Ay, k=0,1,2 -, N—1 (159)

The amplitude resolution can be improved by suppressing the sidelobes by
folding the data with a weight function. For a sine window

k
xk—ncksinﬁﬂ, O<k<N-1 (160)

with the amplitude distribution

1
k_27r

cos (k — Nv)
(k— Nv)* —

A, k=0,1,2 -+, N—1 (161)

1
4
Since the DFT is only defined for v = integer so the frequency resolution is

only in the order of 1/N. However, the functional form for the amplitude
distribution may be used to derive a nonlinear interpolation formula [55]57

1 2A; 1
=—|k-14+—— = k—1<Nv<k 162

v Nl Tt A 2]’ s Avs (162)

56For a so called rectangular window

57TExact for a single peak.

*
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pushing the resolution to 1/N? [59]. The amplitude can then be estimated
from
x 4

A, = A 1
v cosm (k — Nv) k (163)

27 [(k — Nv)® — l]

Note that the frequency resolution is also limited by the Nyquist criteria, i.e.
the frequencies v and 1 —v can not be distinguished.’® For the phase, the two
samples on each side of the peak are separated by 7 with linear interpolation

¢ =¢p—Nw—-k)m, k-1<Nv<k (164)

in the case of a rectangular window.

7.3 A Purely Academic Exercise

We will now perform a purely academic exercise which has nothing to do with
reality since we have so far only a conceptual design and no REAL acceler-
ator, no control room, etc. And, the entire paper is too mathematical, too
abstract and too theory oriented anyway. Simply put, too many equations...
In any case, we will deliberately power three modes according to egs. (165)
and track a single particle for 512 turns and by Fourier analysis and elemen-
tary signal processing determine the corresponding amplitudes and phases in
the frequency spectrum of the betatron motion. We deliberately excite the
first order modes with the following values

Asooo0 = 6.944, 30000 = —1.8deg,
Atoo20 = 16.10, ®10020 = 54.0 deg,
A0 = 8.26, 10200 = —70.2deg (165)

An easy calculation with formula (156) for the initial conditions
Jr=15x10"", ¢,=00, Jy=10x10"", ¢,=90.0° (166)

gives the spectrum

R 5.0 x 107%  —45.0deg — —
ve— 2, 3.0x107°7 90.0deg 6.0x 10 —90.0deg
v +2v, 1.0x107° 45.0deg 2.0x107°  45.0deg

58S0 called aliasing. Tt is a reflection of the sampling theorem stating that to be able to
resolve a frequency f one has to sample with at least 2f.

(167)

46



* FFT{I}

7.(8) [wmrad]

x10-3

Figure 7: Perturbation of the Action Variables.

Figure 7 shows the tracking results. Fourier analysis and interpolation of the
tracking data gives
f A, 2 A, by
RI7 5.3 x 107° —45.1deg -

vy —2u, 2.9x107° —82.6deg 5.8 x 1077 94.6deg
vy +2v, 1.0x107° 49.6deg 1.9x10° 49.0deg

(168)

The phase of v = v, — 2v, appears with the wrong sign since it is 1 — v
that appears in the spectrum due to aliasing. Let us simply point out then,
that one may in the control room measure the first order modes, compute the
required increments in sextupole strength to obtain the same excitation (with
a minus sign), and apply it as a correction to cancel the first order modes.
Since we have already shown that the second order modes are driven by
cross terms of the first order terms, their local cancellation effectively means
indirect control of the second order. We have already illustrated what this
means in terms of performance. The complementary aspect, how to measure
and control the reduction of performance related to symmetry breaking due
to engineering tolerances have already been operationally established, see ref.
(38, 51, 52, 53].
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8 Conclusions

We have summarized how modern techniques for single particle Hamiltonian
dynamics allows one to easily implement an accurate and self-consistent com-
puter model for numerical evaluation as well as analytical studies. A 4th
order symplectic integrator that preserves the symplectic structure of Hamil-
ton’s equations allows for accurate long term tracking and extraction of the
corresponding Taylor series maps to arbitrary order by replacing the related
floating point arithmetic by Truncated Power Series Algebra (TPSA). More-
over, TPSA also makes it feasible to implement a map normal form algorithm
to arbitrary order. The derivation of analytical formula to obtain insight into
the parameter dependence of various dynamical properties is simplified con-
siderable by taking advantage of the Lie algebraic structure of Hamilton’s
equations. These techniques allowed us to pursue a systematic design to-
wards a sextupole scheme for the Swiss Light Source (SLS). In the process
we also confirmed that perturbation theory works fairly well for the regions
of phase space where the motion is regular, hence allowing us to model and
reduce the effect of the nonlinear perturbations.
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