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ABSTRACT 

The distortion functions as introduced by Collins are derived using the canonical Hamil- 
tonian formalism. Beam shape distortions in the horizontal and vertical phase spaces due to 
skew quadrupoles, normal and skew sextupoles and normal and skew qctupoles are in turn 
calculated in terms of these distortion functions. The lowest nonvanishing contributions to 
the tuneshifts introduced by the above multipoles are also computed analytically. Finally 
applications demonstrate the degree to which the above calculations agree with experimental 
data. 
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1 Introduction 

No machine is perfectly linear. There are systematic sextupole components in dipole 
fields from steel saturation, remanent fields, persistent currents, eddy currents, and random 
sextupole components due to field errors. Of course, there are also sextupoles placed around 
the ring on purpose to counteract the above and to modify chromaticity. Higher multipoles 
are also possible; for example, the octupole components from beam-beam collision. The 
theory therefore becomes nonlinear. This does not mean though that we lose all our pre- 
diction of the beam shape by the beta functions. For a large size storage ring, the need for 
sophisticated diagnosis of minor faults demands a rational beam behavior. Such rational 
behavior is also required for a beam pipe of small bore so that the magnet size and conse- 
quently the cost can be reduced. All these imply a machine that is as linear as possible. As 
a result, perturbation theory can be used away from resonances. Collins’ has proposed a 
set of distortion functions for each order of the perturbation. These distortion functions are 
closed, i.e., periodic. They are independent of the beam amplitude and are very similar to 
the beta functions and alpha functions of the linear theory. Of course, the beam profile is 
not so simple now, because horizontal and vertical motions are coupled together. So it no 
longer manifests itself as an ellipse in each transverse phase space. Instead, it becomes a 
four dimensional hyper-egg and we can only talk about its projections onto the transverse 
phase planes. However, these distortion functions can give us the exact projections. They 
can also give us two important numbers: the transverse betatron tuneshifts Au, and Au,. 

In sections 2, 3, 4, 5 and 6 we shall derive the beam-shape distortion and the tuneshifts 
due to skew quadrupoles, sextupoles, skew sextupoles, octupoles and skew octupoles, using 
the Hamiltonian approach. In the derivation we follow exactly the same ideas used by Ng2 
for the case of sextupoles. So this note is a continuation of Ng’s note*J. Lastly, in section 7 
some applications are discussed followed by general remarks. 

We start from the Hamiltonian describing the motion of a single beam particle, 

+ 24(h) 
2k(X’-6X2~2+y4) - --&x.3y-x.y3), (14 

where P, and PV are the canonical momenta conjugate to the horizontal and vertical displace- 
ments X and Y, K,(s) and Ky( ) s are p p t ro or ional to the restoring forces due to the ring’s cur- 
vature and the field gradients of the normal quadrupoles. The term -(B:/ Bp)Xl’ gives only 
the skew quadrupole potential with Bp denoting the magnetic rigidity of the particle. The 
term [Bz/6(Bp)](X3-3XY2) g ives the normal sextupole potential, [B~/6(Bp)](3S2Y-Y3) 
gives the skew sextupole,.potential, [Br/24( Bp)](S4-6X2Y2$Y4) gives the normal octupole 
potential and [By/6(Bp)j(X3Y-XY3) g ives the skew octupole potential. 
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We next perform a canonical transformation into the Floquet space using the generating 
function 

G(QLY,~,;~) = c - E 
U=Z,y [i) 112 

ix P,u+ -gL2 . 
0 1 (1.2) 

The new Hamiltonian becomes 

) g5 [(E?)3’:3c3(&%)1’:y.] 2!& [3(c!g)1’2x2y- (2)‘$3] 

2 4 VLPy 2 2 x --2 y + (4!&] - g!!& [ (!gpye (!xJ1’;y3] . 
PO2 

In the above, the independent variable s has been changed to the more convenient 4 = s/R, 
where R is the average radius of the storage ring. 

This Hamiltonian is now solved exactly to zeroth order in multipole strength by canonical 
transformation to the action-angle variables 1=, a, and I,,, uy. The generating function 

G(~r,~o,=yr~y; 0) = c gap: cot [a@) + GA] (1.4) 
u=z,y 

is used to obtain the transformation 

u = (21,pcp~cos g&(e)+ a,] , (1.5) 

POpu = - (21,/30)~‘~ sin [Q,( 8) + a,] , (1.6) 

where Q,(e) = &(fi) - vd, POP, = du/d& and is denoted by u’ below. In the above, V, is 
the betatron tune and 

is the Floquet phase at the location s. After the transformation, the new Hamiltonian 
becomes 

H3 = ~~1, +.vJy + multipole terms . 

From here on, we treat each multipole term separately. 

(1.7) 
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2 The Skew Quadrupole Term 

2.1 Beam Shape Distortions due to Skew Quadrupoles 

The skew quadrupole term in the Hamiltonian H3 is 

Transformation to the action-angle variables I, and a, yields 

AH3 /sq= - ~(~~8,)‘12(21,)‘~2(21,)‘~‘jCOS (&+ +a+) + cos (Q- ---)I ) (2.1) 

with Q* = Qz i Qy, a+ = a, i ay. We note that the expressions 

are periodic functions of 6, so they can be expanded into harmonics. And so we get 

AH, lsq= -(21J1’2(21y)‘/2 x[A+,,., cos q+ + .4-, cosq-] : 
m 

(2.2) 

where qf,,, = c~~,,,--mtJ+a~, and 

-he ia*, - 1 
-ii k c qkei(Q* fme)k . (2.3) 

The summations in Eq. (2.2) are over all integers m from -co to +oo. The summations in 
Eq. (2.3) are over all skew quadrupoles at position 8k along the ring. Here we treat the skew 
quadrupoles as elements of infinitesimal length &, at position 8k and with strengths 

qk = (p,3,):12~ . (2.4) 

In Eq. (2.3), the harmonic amplitudes A+,, A-, and the phases a+,, CY-, are real numbers. 
For the first-order beam shape, we can solve the equations of motion obtained from the 

Hamiltonian H3 to the first order. However, because we are interested in the second-order 
tuneshifts also, it will be advantageous for us to make another canonical transformation from 
(aU,lu) to (b,,J,) so that the J, ‘s become constants of motion up to first order in qk. This 
is called a Moser transformation with generating function 

G3(~7 4, ay, Jy; 6) = a,J, + ayJy 

- (2Jz)1’2(2Jy)‘/2 c (+$ 
LIZ 

sin qim + ~ sinq-, , 
m + m-u- ) 

w-here ui = Y, i vy. By definition the new Hamiltonian is 

(2.5) 

H4 = v,J, + vyJy + AH1 /sq , w-9 
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where A H4 Irq does not contain any zero-order or first-order terms qk. The first-order changes 
in I, and a, are therefore given by 

=3 J 61, = I, - J,, = aa - u , 
Ii 

(2.7) 

aG3 
6a, = a, - b, = a, - a~ . 

u 
(2.8) 

Explicitly they are 

aI, = -(2I8’“(2r,)“’ c (* cosq+, + & CO5 qTm) , 
m 

4 = -(w’2(21,)1’2 c (+& cos q+m - +& COS qmm) , 
m 

ha, = (%,“& (*sinuirn t &sinq-m) , 

ha, = (?,“12;- (2 sinq+* + &sinq--) . (2.9) 

These are related to the changes in amplitudes and phases. Recalling from Eqs. (1.5) and 
(1.6) that 

u = JL cos [Q@) + au] , 

u’ = -A sin \QU(8) t a,] , 

where 
A = (2LPo)“2 , 

(2.10) 

(2.11) 

we have changes in amplitudes 

As for the angle variable a,, if we solve the Hamiltonian H3, we get 

da, _ aH3 - - = v + quadrupole terms . 
d0 aI, u 

(2.12) 

(2.13) 

Thus, for the unperturbed part, 

au(O) = u,B + constant . (2.14) 

Here, the constant should be chosen as C& -$J,,, where &(d) is the instantaneous betatron 

phase and $,(O) is the Floquet phase designating the location at the point 8. Although 

5 



FN-493 

both of them depend on 6, their difference is B-independent. Such a choice of the constant 
is necessary, because substitution of 

a, = vu8 - & + (bu = & - Qu (2.15) 

into Eqs. (2.10) gives 

u=d&osqs,, and u’ = -&sind, . (2.16) 

Therefore, the change in the angle variable a, is just the change in the instantaneous phase, 
or 

6~)~ = ha, . (2.17) 

But before we calculate the changes in amplitudes and phases, let us simplify Eqs. (2.9) by 
performing the summation over m. This can be accomplished easily using the formula 

m 

c 
,i(mhJ + b) 

= 
??I=--a, m-u 

1 

--,Q + 48 - 41 7r 

sin 7ru 
(I < (3 < 2x 

--K cot mib e==o. 

This leads us to* 

c 
A+,,, e.iq+m 

=e i$+(13+ + iA+) , 
m m - u+ 

c 
A-,.,, &-m 

= ei4- (B- + iA-) , 
m m - Y- 

(2.19) 

where & = & i Q)Y, and B+, A+ and B-,A- are two sets of distortion functions defined by 

Collins 

‘*(~*) = -2sinlau* C “Os[~~l, - I* - yap] , 
k 2 

(2.21) 

and the prime on B* denotes differentiation with respect to the argument. Instead of $i, 
we can also write the argument of the cosine in Eq. (2.20) as 

The wa.y that it was written in Refs. 2, 3: and 4 is incorrect. The distortion functions 
defined above are in fact as explained in Refs. 2 and 4, lattice functions due to the presence v.’ 

‘For an illustration of how this can be done see Refs. 2 and 4 

6 
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of skew quadrupoles, just as the p and (Y are lattice functions due to the presence of normal 
quadrupoles. They are periodic functions of the ring and closed after one revolution. The 
vector (I?+, A+) rotates around the ring according to the angle equal to the phase advanced. 
At a skew quadrupole of strength qk, A+ jumps by qk/2 while Bc remains continuous but 
exhibits a cusp. 

We are now in a position to calculate the distortion of the beam shape projections. 
Substituting Eq. (2.19) into Eqs. (2.9) and using Eqs. (2.12) and (2.17) we arrive at 

64 = Sty [( A+ sin ++ - B+ cos 4,) + (A- sin $- - B- cos r$- )] , (2.23) 

~54 = 4[( A+ sin 4+ - II+ cos $+) - (A- sin $- - B- cos &)] , (2.24) 

JY 64, = z [( A+ cos ++ + B+ sin 4,) + (.4- cos q5- + B- sin d-)] , (2.25) 

4 Sq5, = -[(A+ cos qS+ + B+ sin 4,) + (A- cos & + B- sin $-)I . 
sty 

Thus the distorted beam shape in phase space can be written as 

(2.26) 

X = .(4+~4)cos(&+6~,), (2.27) 

2’ = -(R,+i54)sin(9,+6&), (2.26) 

Y = (R,+~sz,)cos(~,+6&J, (2.29) 

yl = -(R,+WJsin(4,+h&), (2.30) 

where 64, 64, W,, 64, are given by Eqs. (2.23) to (2.26). These distortion formulae are 
exactly those given by Collins. 

Finally at this point we would like to remark that the term distortionfrLnctions used here 
is not very successful since we are dealing with a linear problem. The term error functions 
would be a more appropriate one. 

2.2 Second-order Tuneshifts 

The first-order tuneshift due to skew quadrupoles vanishes. This is because the first 
order-term in the perturbation Hamiltonian has the form xy. But since cos 4, cos & has a 
zero average there is no shift in the tune to first order. The lowest nonvanishing contribution 
to the tuneshift comes from the second order. To obtain the second-order tuneshifts, we 
need to evaluate the second-order skew quadrupole terms in the Hamiltonian Hq. From the 
generating function Gs of Eq. (2.5), we get 

A-, 
CCJS q+ + ~ cos q- 

m-u- )I (2.31) 

and similar expression for (21,) ‘/’ Then the second-order terms in the Hamiltonian is . 

% 
A-m cos q- t ~ cos q- 

+ m-u- ) 

7 
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+ (2Jz)C --J$cosq, - &coeq-)] - ( m 
(2.32) 

Since betatron tunes are defined per revolution, we average over 8. This leads to 

A%.,, A!,,., 
m-v+= 

A;,,, A2 
p--m . 
m-u+ 

(2.33) 
+ m-u- 

Now we need to sum over the harmonics using again Eq. (2.18). .Written in terms of the 
distortion functions, we have 

The tuneshifts are given by 

Using Eqs. (2.33): (2.34), and (2.35) we obtain the tuneshifts 

Au,= &Big+ B-q),, . 

k 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

As expected the tuneshifts are independent Of the amplitude. 

3 The Normal Sextupole Term 

Even though the formuke for the beam shape distortions and the second-order tuneshifts 
due to normal sextupoles have been derived extensively before, in Refs. 2, 3 and 4, we shall 
include the derivation here, for completeness. 

3.1 Beam Shape Distortions due to Normal Sextupoles 

Let us start from the sextupole term in the Hamiltonian (1.3) 

(3.1) 

8 
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and expand it into harmonics to get 

AH3 Ins= ( 2Z)3’2p,‘12 z( 3A1, sin qlm t Asrn sin q3m) 
m 

-(212)““(21,)&” x(2&, sinI&+B+, sinp+,+B.+, sinp-,) , (3.2) 
m 

with qlm = cqm-me+a,, Q3m = a3m-me+3a,, plm = Plrn-m@+ar, pi, = P*m-me+a*, 
a* = 2uyfa,, and 

Alme ialm _ 2 _ - c 24~ k 
skei(Qz+md)k , 

Asme ia3m _ a _ - c 24~ k 
skei(3Q= +me)k 9 

BlmeiPlm = k C skei(Qs+me)k , 
k 

Bltme 
@km = a - 

c 
8R k 

jkei(Q*+md)k , 

P-3) 

P-4 

(3.5) 

(3.6) 

where Q* = 2Q, !L QP. The sextupoles are assumed to have infinitesimal length e& with 
strengths 

At this point, because of our interest in the second-order tuneshifts, we shall proceed by 
making a Moser transformation from (uU,I,,) to (b,, J,), u = ~,y, using the generating 
function 

G&L, J,, G,, Jy; 0) = a,J, + ayJy - (2Jz)3/2p~‘2 c (2 cos qlm -+ m21u cos Q3m 
m a! 2 

) 

+(2J,)“2(2J,)p;‘2~ 
B-m 

COSp+m t ___ cos p-, 43.8) 
m 

2 cosplm - s 
3 + m-u- 

where u* = 2~5, f us. By definition: the new Hamiltonian is 

where AH4 in5 does not contain any zeroth or first-order terms in s& or Sk. The first-order 
changes in I, and a, which are given by Eqs. (2.7) and (2.8) are 

61, = (21,)31210,“2 C (2 sin qlm -I- 
m 2 

$!t; 
.r 

sin q3m) 

-C2~~)‘l”(2~~)P~” C (2 sinpl, - GS- sin p,, - & sin pm-) , 
m I 

9 
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&.a, = -2(21z)“2P,“2C s 
( 

B 
COSPlm + 

+m B-WI 
___ cos p,, + ___ cospem . (3.10) 

m D m-u+ m-u- ) 

We shall relate these changes to changes in amplitudes and phases. But first we are going 
to simplify (3.10) by doing the summation over m. We use again formula (2.18) to arrive at 

c Aim -eiqlm = keidz( -iB1 + A,) , 
m m--b 

c 
A 3m 

m m--u, 
eiq3m = Ae3i4s(-iB3 + *A3) , 

3 

c 
B lm -,iph = ei45( -ijj + A) , 

m m--h 

c 
B +m ,iP+m = ei4+(-iB, + Aa) , 

m m-u+ 

c 
B-m ,ip-, = ei+-(-iBd + Ad) , 

m m-u- 

where & = 2&, f & and the distortion functions are defined by 

B1(~‘) = 2sinlav c ~ cos (~:&-~~-xu~) , 
= k 

Al(&) = B:(k) , 

B3(31CI,) = 2 singau C ~ ‘OS ‘(~~&-~~-~U~) , 
= k 

-43(39,) = &(3$)5) , 

(3.11) 

BJ++) = . 1 c Zsin7ru+ k 
: co+,+$+--u-) , 

10 
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B&V = 2si;au- F: cos(~‘_,-$-~~-), 

A&-) = B&6-) , (3.12) 

with +* = 2$, k & and $: and +$L defined in Eq. (2.21). From Eqs. (2.12) and (2.17) we 
recall that the distortion of the amplitudes d,, and phases & are given by 

( 1 

112 
bA, = g SI, (3.13) 

u 

and 
SqS, = ba, . (3.14) 

Using Eqs. (3.10) to (3.14) we obtain 

64 = dz [( Al sin & - B1 cos 4=) + (A3 sin 3& - B3 cos 3&)] 

- dti2(A sin &-I? cos&)+(A,sin++-B,cosd+)-(Adsin+--Bdcos+-)], (3.15) 

Sd,, = -24dJA sin c$+ - B, cos q5+) t (4d sin d- - Bd cos $-)I , (3.16) 

64, = 4/3(A 1 cos q& t Bl sin &) + (A3 cos 3~75~ + B3 sin 3&)] 

-~[2(~coh#h+Bsinh)+ (A,sin$++B,cos4+)+ (Adcos&+Bdsin&)] , 

(3.17) 

64, = -24[2(A cm 4,+B sin &) t (A, cos$+tB,sin$+) t (A dcosc$-+Bdsin~$-)] . (3.18) 

The sextupoles have an average dipole effect on a charged particle which leads to a distortion 
of the ideal closed orbit. This can be obtained by separating out from Eqs. (3.15) and (3.17), 

bd’, = 2dz( Al sin & - B1 cos q&) - 2di( A sin & - B cos &) , (3.19) 

464: = 2d;(B rsin~z+Arcos~,)-2d~(Bsin~,+Acos#~), (3.20) 

which correspond to a closed orbit distortion of 

6x = 2(d;B-d:B,) , 

62’ = 2(d;A-d;Ar) . 

Thus the distorted beam shape in phase space can be written as 

(3.21) 

(3.22) 

x = 6x + (4tb4)cos(qL+5~,) , (3.23) 

2’ = 6x’ - (4t64)sin(&+6&) , (3.24) 

Y = vY+~Jw4ih+~#,) 7 (3.25) 

Y’ = --(R,+&Jsin($,-Wy), (3.26) 

11 
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where SR, and S&, are given by Eqs. (3.16) and (3,18),.6x and 6x’ by (3.21) and (3.22) and 
6R, and SC& by the differences of Eqs. (3.15), (3.17) and (3.19), (3.20), or 

64 =d;[-(A 1 sin & - B1 cos q&) t (A3 sin 3d2 - B3 cos 34,)) 

-di[(A, sin 4, -B, cos 4,) - (Ad sin +- - Bd cos cj-)] , (3.27) 

@= = 4 [(AI ~0s 4~~ + 6 sin &) + (A3 cos 3& + B3 sin 3&)] 

-$A ,,costi-+B,sin4+) + (Adcos4-+Bdsin4-)] . (3.28) 

3.2 Second-order Tuneshifts 

The first-order perturbation produces no tuneshifts. The reason, as in the case of skew 
quadrupoles, is that the first-order term in the perturbation Hamiltonian is of the form 
z3-3zy2. B t u since cos3 & - 3 cos & cos’ &,. averages to zero, there is no resultant shift in 
the tune to first order and we must seek higher approximations. The lowest contribution to 
the tuneshift comes from the second order. From the generating function G3 of Eq. (3.8), 
we get 

(21z)“” = (2Jl)“‘” $ 9(2Jz)2p,‘12c (--& sin qh + 
A 3m 

sin q3m 
m 2 m-3u, 

-3(2Jg)(2J,)p,“” C f$ 
B tm 

sinph + - 
B-m 

sinptm + ~ 
m * m-u, m-u- 

sin p-, (3.29) 
) 

and a similar expression for (21,)““(21,). Then th e second-order terms in the Hamiltonian 
is 

AH4 Ins= x(3A1,l sin qlmI + ~3~’ sin q3,,p) x 

x 
i 
Wo;;Lj2x (-&- sin qh + 

A 3m 
sin q3m 

m t m-3u, > 

-3(2J#J,)Po 1 
B fm 

sin plm + - 
B-WI 

sinp+m + ~ sin p-, 
m 

2 
iZ m-ut m-u- 

t... . (3.30) 

If we now consider only the o-independent terms we obtain 

AH; Iss= $30(2Jz)” c 
m 

f&- t ,“2yu ) 
z 

+$30(2Jy)2 c 
Bra 

m 
2 + fi + -it%- 

I3=2 i2 

m-u- ) 

+2/3c,(2”5,)(25,)~ 
m 

fi - -m - 6~4lrnB1, 

t m-v- m-u, COS(Qlm -A,) 1 . (3.31) 

12 
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Summation over the harmonics leads to the following result 

c AL ~ = m m-b 
c -‘cl = 
m m-3u, 

c 
Kll - = 

m m--h 

c 
%?I - = 

m m-v+ 

c 
Bk = 

m m-u- 

(3.32) 

So the tuneshifts given by (2.37) are 

Av, = -;d;x(3&s+B3s), - ;d;~(B,S+&3-2&s)* , 
k k 

(3.33) 

4 The Skew Sextupole Term 

4.1 Beam Shape Distortions due to Skew Sextupoles 

We start from the skew sextupole term in the Hamiltonian (1.3) 

AH3 Iss= - 

(3.34) 

(4-l 1 

and expand it into harmonics to get 

A H3 lss= (2r,)3’2p,“2 c( 3A;, cos ~1, + Akm cos P3m) 

-~~r,~‘i’~~~~~~~~2,c(zs:, cos qlm + B;,,, cos q+m + B:, cos q-m) , 
m 

(44 

with Plm = 4,-mg+a,, PJVI = Q~m-mO+3a,, qlm = /Ii,-me$a,, qfm = p;,-mflia+, 
ai = 2a,fa,, and 

_ A’lmei”:, = 1 - 1 ,;,i(Q,-cm~)k ) 
24~ k (4.3) 

13 
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(4.4) 

where Q= = 2QI f Qy. The skew sextupoles are assumed to have infinitesimal length !k 
with strengths 

li2( B;.t)k I”( B:‘e>k 
k 2(Bd ’ k 2tBd * P-7) 

Again here, because we are also interested in the second-order tuneshifts, we shall proceed 
by making a Moser transformation from (a,,l,) to (b,,J,), u = z,y, using the generating 
function 

G3(a,,J,,ay,Jy;d) = a,J, + ayJg + (2Jy)3’2k3t’2C %n 4ln - sin pl, + ____ sin PJ~ 
m m-u, m-3u, 

- (2Jy)“2(2Jz)&‘2 c (s sin qlm + %n sin qfm + 
B1, 

sin qTm 
m - V+ m - Y- 7 (4.8) 

Y 

where vi = 2u, 5 vy. By definition, the new Hamiltonian is 

H4 = v,J, + vyJy -i AH, 1s , (4.9) 

where AH4 jsI does not contain any zeroth or first-order terms in sa or s;. The first-order 
changes in I,, and a,, are given by Eqs. (2.7) and (2.8). Explicitly they are 

SI, = -( 21,)‘l’(21&?;” c 2 cos q+m + +& cos q+ , 
m ( ) 

61, = (21,)34;‘2 c COSPlm t 3&l 
cos P3m 

??a ( 2 
Y m-3vy 1 

-(2l,)““(21&3,“” c 
( 

f& co-s Qlm + 
BLn BI, 

~ cos qtm - -cosq-, ) 
m Y m-v+ m-v- ) 

ba, = 2(2Iy)‘/2p~/2 C 
( 

2 &?a B’ 
sin qh t ___ sing+* t --m sin qem , 

bay = -3(21y)‘12&‘2 xm( f$$ Iin pl, $ 

m-v+ m-v- i 

m 
2Jv 

Y 
sinp-) 

f (21y)-1’2(21z)$‘2 C 
( 

2 sin qlm $2 sing+, - 
B’ 

=sinq-, . 
t m-v- 7-n Y 1 

(4.10) 

14 
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We shall relate these changes to changes in amplitudes and phases. But first we need to 
simplify (4.10) by doing the summation over m. We use again formula (2.18) to arrive at 

c 
47n ,iph - - 

m m-v, 

-;ei’+‘y(B1 tiA,) , 

c 4, -e ip37n 
m m-3vy 

= -ieJi4y(B3+iAJ) , 

c -&?lm = -ei&f(~+ij) , Bim 
m m-u, 

c 
B’ +m,iqt, = -t@+(B,+iA,) , 

m m--v+ 

c 
B’ -m&?-m = -e i9-(&-tiAd). 

m m-u- 

where & = 2$s f by and the distortion functions are defined by 

BlWY) = 

AI(&) = B#b,) , 

B3(3&,) = 2sin;nv 
4 

c qCOS3(ljl;k-h-~vy) , 
Y k 

A3(3&) = &(3?C1,) , 

B(+,) = 2si;nv 
s; 

~~c~s($&-lc’y-?Tlry), 
Y k 

B&‘-) = 2 si;nvv F % ~3s ($:k -+- -=) 1 

(4.11) 

Ad(k) = Bihb-) : (4.12) 

15 



FN-493 

where +* = 2$~= f &, and $5 and $I are defined in Eq. (2.21). From Eqs. (2.12) and (2.17), 
we recall that the distortion of the amplitudes A, and phases & are given by 

PO 
64 = 21 61, 

( ) 

If2 
(4.13) 

u 

and 
6qSu = ba, . (4.14) 

Csing Eqs. (4.10) to (4.14), we obtain 

64 = -2&4&4, sin 4+ - B, cos $+) t (Ad sin $- - & cos c$- )] , (4.15) 

SR, = A:[( Al sin 4y - B1 cos 4,) t (A3 sin 3tiy - B3 cos 3$,)] 

- d~[2(~sin~,-~cos~,) t (A. sin d+ - B, cos t$+ ) - (Ad sin d- - Bd cos 4- )] , (4.16) 

4 = &$(A 1 cos 4; t Bt sin 4,) t (A3 cos 3tiy + B3 sin 3tj,)] 

-L&j 
AL 

cos4,+Bsin&,) + (A, cos c#+ t B, sin dt ) -t (Ad cos q!)- f Bd sin 4-)] . 

(4.18) 

The skew sextupoles have an average dipole effect on a charged particle which leads to a 
distortion of the ideal closed orbit. This can be obtained by separating out from Eqs. (4.16) 
and (4.18), 

ad”, = 2di(A1 sin 4, - B1 cos 4,) - 2dz(,Li sin 4, - B cos 4,) , 

d.& = 2d;(B1 sin4,tAl COSTS) - 2d~(Bsin~,+Acos+,) , 

which correspond to a closed orbit distortion of 

6y = 2(dzB - d;B,) , 

6~’ = 2(d;A - d;A,) . 

Thus the distorted beam shape in phase space can be written as 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

22 = (4+~4)cos(a-W,) , (4.23) 

2’ = -(4+64)sin(&t6&), (4.24) 

Y = 6Y + (R,t@/)c0s(4y,+-6~,) , (4.25) 

Y’ = JY’- (R,tbR,)sin($y,t5dy) , (4.26) 

where 64 and 6& are given by Eqs. (4.15) and (4.17), 6y and 6y’ by Eqs. (4.21) and (4.22) 
and r5R, and Sr$, by the differences of Eqs. (4.16), (4.18) and (4.19), (4.20), or 

SR, = d;[,(A 1 sin 4, - B1 cos 4,) + (As sin Qc$~ - B3 cos 3$~,)] 

-d%[(A# sin d+ - B, cos 4,) - (Ad sin rb- - Bd cos 4-)] , (4.27) 

16 
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6$, = 4 [(AI cos $y t 4 sin 4,) t ( AJ cm 34, t & sin 3$,)] 

-$-)(A. cos4++B,sin$+) t (Adcos+-t&sin$-)] . (4.28) 

4.2 Second-order Tuneshifts 

As expected from the symmetry between the equations for the normal sextupoles and 
the ones for the skew sextupoles (if one interchanges x and y in the equations for normal sex- 
tupoles, one gets the equations for skew sextupoles and vice versa), the first-order tuneshift 
due to skew sextupoles also vanishes. To obtain the second-order tuneshifts, we need to eval- 
uate the second-order sextupole terms in the Hamiltonian H4. From the generating function 
G3 of Eq. (4.8), we get 

(21,)3’2 = (2Jg)3’2 + 9( 2Jy)2py2 c (& COSPl7n t Akrn 
m-3u, cos P3m 

1 

-3(2J,)(2Ji/)Pi’2 z (& COS qlm'+ & COS q+m - B’, COS qsrn) (4.29) 
m Y + m-u- 

and similar expressions for (21,)‘/“(21z). Then th e second-order terms in the Hamiltonian is 

AH4 /ss= )3A;,, cos pl,, t A;,, compost) x 
m’ 

x 1 wo(2Jy)2 c ( 
& CoSPlm + 

4, 
m-3uy cos P3m 

-3wYw)~~ (& COSqlm + 

1 
B’ 

- cos q+m - -m cos qem 
m Y 

,“_;I 
+ m--Y- 11 

+... . 

If we now consider only the fLindependent terms we obtain 

(4.30) 

(4.31) 

Summation over the harmonics leads to the following result 

c 
A?m ZZ 

m m-uY 
-& ~(Bls’)k , 

k 

c 
A2m = 

m m-3uy 
-$ ~(&s’)k , 

k 

17 



FN-493 

- = 

c Aim Bim 

m-u, 
cos (al,, 

m 
- p;,) = -& c(Bd)k . 

k 

So the tuneshifts given by Eq. (2.37) are 

and 

(4.32) 

(4.33) 

hy = -$d; ~(3&s’-t-&s’)k - &d; ~(B.s’+&&2&S’)k . (4.34) 
k k 

5 The Octupole Term 

5.1 . Beam Shape Distortions due to Normal Octupoles 

The normal octupole term in the Hamiltonian (1.3) is 

(54 

If we expand this into harmonics, we get 

AH3Ioct= (~~~)2~~~(~A~c~s~~m~~~~m~~~~~m+~~mc~s~~m) 

-(21.)(4/30 x(2B; ~0s porn -2B,, cos pzrn . 
m 

+2B,, cos p, t B+, cos p+,, - B-, cos p-m) 

+( 2I,)‘po E( 3Ak cos r, + -1 .&ll cm T2m t A4m cos T‘jm) , 
m  

P-2) 

where qom = c$,, - me, q2m = g,, - m@ + 2a,. qarn = g,, - mB + 4az, porn = pk - me, 
P zm = i%,-me+2a,, p, = @m-m6t2ay, pdm L 3+,-mB+2U+, p-, = p-,-mt9+2a-, 
Torn = fig -me, rZm = tiarn - mfl-t 2ay, rdrn = Cam - m8 f 4ay, ai = a2 f ay, and 
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B(@i = d- c 
32x k mke 

imdk 
’ 

Bzrnei’xm ‘= A- 1 mkei(2Q,+mfl)k , 32~ k 

By,.,,ei@ym = 3 1 mkei( 2Qy+d)k , 
32~ k 

B*,@*m = 3 c mke@Q*+me)k , 
32~ k 

A2,e ifi,, - 
1 

_ - c akei(2Qy+m@)k , 
64~ k 

ii4,ei64m = -& C akei(4Qy+mfl)k , (5.3) 
’ k 

with Qk = Qz 5 Q,. The normal octupoles are assumed.to have infinitesimal length .& with 
strengths 

For the first-order beam shape, we shall solve the equations of motion obtained from the 
Hamiltonian H3 to first order, instead of performing a Moser transformation. This is because, 
unlike the previously analyzed multipoles, normal octupole has a first-order tuneshift which 
can and will be calculated directly from the Hamiltonian H3. 

The equations of motion are given by 

dl, 13H3 
dB = au, -- = (2~z)2~~~(8A,, sin Q2m +4X4m sin qam) 

m 

-(~I~)(~IY)Po C(4B.m sinp,,+2B+, sin p+,,, -‘2B-, sinp-,) , 
m 

(5.5) 

dIy aH3 
- -- = -(21,)(21,)/3~~(4B,, sinp,,-2R-,sinp+., 

d9 aa, 

-2B-m sin p-,) t (2I,)‘&, k(8a2, sin rzrr. - -I .i4m sin rqm) , 
m 

(5.6) 

da, tV3H3 
-a = aI, - = b t 4(2w, C(~A: cos qOm - 4.~~~ cos q2m t b4m cos q4m) 

m 

-2~21,~~~~t~B~~~~~om+~B,~~~~p~,-’U,,cospymtB+,cosp+m+B~mcosp_,) , 
m 

F-7) 

Y aH3 da 
- - = UY - %=‘,)Po )32Bll, cospom - ZR,, ccc p+m t 2B,, cosPyn + B,, cosp+, dB ar, m 

19 
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+ B-m COS P-m) -I- 4(21&k& C( 3AO, cos Q&n+4A2m cos rZm t A4m cos r4,) . 
m 

(5.8) 

The solution of Eqs. (5:7) and (5.8) gives, in the absence of octupoles, a, = u,d+ constant. 

Again, we choose 
a, = uue - $k t & , (5-g) 

where +U is the Floquet phase at position 6 and r#,, is the instantaneous phase of the betatron 
oscillation. Since we are interested in solutions accurate up to lowest order in mk, mk and fik 
only, on the right hand sideof Eqs. (5.5) to (5.8), I, and Iy can be considered as d-independent 

and Eq. (5.9) can be substituted for a,,. Then we can integrate all four differential equations 
easily. Denoting by b the deviation from the situation where the octupoles are absent, we 
obtain 

sIZ = (2Iz)“PO C (2:; COS Q2m t ~~~~ COS Q4m) 

-(21Z)(-N,)POC (1:;; COSpxrn t jtiz+ COSp+m+ f", COSP-m) ~(5,10) 

sry = -(21x)(21y)P0 i( ff; xCOS&p + f"S+ COSp+m - :“I;: iOSp-m) 
m Y 

+(2I, )2Po c 
rn( 

,““;; COST2, + 
4Asm 

COS TQrn , 
Y m-4uy 1 

6a, = -4(21z)po c $ sin qOm + 4A2m 
_( 

A - 4m 

m-2u, 
sin Q2m + m-4u, sin Q4m 

t2(21y)P0C z sinps, + ,““iz sin p, 
m ( x 

2Bym B fm B-m 
+ 

m-2uy 
sinp, + 

m-2u+ 
sinp+, -k m-21/- 

sinp-, , 
) 

bay = 2(2I,)Po C 

2B; 
( 

z sin pa, t i2yu sin Pzm 
2 

sinp, + 
B 

t 
fm 

m-2uy m-21/+ 
sinp+m t 

B-m 

m-21/- 
sin pm, 

i 

-4(2I,)po c 
m 

% sin Torn + ,“!;I sin r2m + A4m 

Y m-4uy 

(5.11) 

(5.12) 

(5.13) 

where uk = ut i vy. Finally we are going to perform the summation over m, using for- 
mula (2.18). This yields the following results 

c 
A2m 

,hL 
e ‘q2m 

m m-2u, 
= - T(B2 + iA2) , 

5. c 
A4m 

,4ih 
iQ4m - - e - 

m m-4u, 
T(Bl t iA*) , 

20 
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c B xm $Psrn _ _ 
3e2i4x 

- 
m m-2v, ,--(Bs + iAs) , 

c 
B +m ,ip+, = 3e2++ 

m m-2u+ --(B” + iAs) , 

c 
k7l ,iP-m _ 

$+- 
- 

m m-2v- -2(B4 + iA4) , 

c 
BYm &P, = _ 

3e2ih 
m m - 2V, ~(BG + iA6) , 

c 
A2m eiT2m - 

e2idy 
- 

m m-2uy -~(BB + iAe) , 

C ~4m eiT4m = -~(a + iA7) , 
m m-4v, 

(5.14) 

where C#Q = q& i & and the various sets of distortion functions are defined as follows 

Bl(4~x) = 2sin~4u 

A1(4&) = B;(4&) , 

Bd2+4 = c 3 c0s2($J~,-3!&-7&) ) 
= k 

A2GW = B:(WJ , 

B3(2ti+) = 2 .lZu c T cos 2(& -$+ -TV+) , 
+ k 

A$%‘+) = B;(++) , 

B4(2+-) = 2sin;2um T 7 cos&tk-+- -TV-) , 

A4(2$‘-) = B:(2$4 , 

B5(21CI,) = 2sin1~2u c ~cos2(~1:k-~x-~ux),, 
= k 

.45GWz) = B:(W,) , 

B6(2&) = 2sin;2u c y CoS2(#/k-$‘Y-~~g) , 
Y k 

A6(21CIy) = %W,) , 

&(4&J = . 
1 - 

c 2sin 7r4uy k 
y cos4(7&k-~y-xvy) ) 

A7(4&) = BX4&) , 

21 
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f&3(2&) = 2sin12u ~~cos2($:,-&-au,) ’ 
Y k 

A@h) = B;W,) . (5.15) 

Here, again $: and $, are defined by Eq. (2.21). 
We recall that the distortion of the amplitudes & and phases $,, are given by a& = 

6(21&)’ and S+, = ha,. Then using Eqs. (5.10) to (5.13) and (5.14) we arrive at 

64 = A:[( -41 sin 4& - B1 cos 44,) + 2( A2 sin 2& - B2 cos 2&,)] 

-34di:2(.4s sin 2& - B5 cos 2&) t (A3 sin 24, - B3 cos 24,) + (A4 sin 24- -B4 cos 2$-)I, 

(5.16) 

64 = -3d;dJ2(.4 6 Sin 2cjy - & cos 2&,) A ( A43 sin 2$+ - B3 cos 24,) 

-( A4 sin 24- - B4 cos 24-)] + di[2(.4s sin 2& - Bs cos 24,) + (AT sin 4& - B, cos 4cj,)] , 

(5.17) 

6& = dtI( B1 sin 44, + Al cos 44,) + 4( B2 sin 2c$, +A2 cos 2t$x)] 

-3d~~2(Bssin2~,+Ascos2~,) +2(Bssin2~,fA6cos2~y) 

+( B3 sin 2cj+ t A3 cos 21~5,) + ( B4 sin 2$- 7 A4 cos 2+-)] , 

SC& = -3di[2(B 5 sin 24x + A5 cos 24%) + 2( B6 sin 2r& + A6 cos 24,) 

+ (B3 sin 24, $ A3 cos 24,) + ( B4 sin 24.- 7 A4 cos 2~$- )] 

+di[4(As cos 24, $ BB sin 24,) + (AT cos 4&, + B7 sin4&)] . 

(5.18) 

(5.19) 

Here we would like to comment on those terms of &a, and 6a, in Eqs. (5.12) and (5.13), 
whose denominator is m. Even though they seem to diverge when m = 0, this should not 
be the case because they really come from the Hamiltonian (5.1) which is a finite quantity. 
In fact, there is a missing term in Eqs. (5.12) and (5.13) corresponding to the lower limit, 
00, of integration over the angle 6. So in reality these “divergent-like” terms are of the form 
xrn(,im8 _ ,im& )/m which does not diverge for m = 0. This lower limit of integration @a, 
determines the position around the ring where the initial conditions are considered. So, in 
general, there will be one more term contributing to the expression for 64, and 64, which 
will be some complicated function of 8. 

In the particular case of integration of the equations of motion over exactly one turn 
around the ring, one obtains an interesting, though expected, result. Recall that the origin 
of the “divergent-like” terms is the part of the Hamiltonian which is independent of the 
angle variable, a. If one writes the equations of motion for a, and uY for this part of the 
Hamiltonian and integrates them over one turn, one gets 

and 
3 

s"~=-~d:~m,+id~~ek. 
k k 

(5.20) 

(5.21) 
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As we shall see in the next section these expressions are just the first-order tuneshifts (in 
units of 277). This particular case represents the experimental reality more closely. Indeed, 
one usually chooses a point around the ring as the observation point and then one follows 
the behavior of the beam at this same point for every turn. In this case the expressions for 
the phase distortions are simply given by the sum of Eqs. (5.18) and (5.20) for the horizontal 
plane and the sum of Eqs. (5.19) and (5.21) for the vertical plane. 

5.2 First-order Tuneshifts 

In the case of a normal octupole, there exist first-order terms in the Hamiltonian AH310ct 
which are B-independent and yield a first-order tuneshift. The O-independent part of AH310ct 
is 

AH; /,,ct= 3( 21,)2&,@, cos LX; 2 2( 21,)( 21,)&B,O cos ,800 + 3( 2Iy)2&d; cos 6; 

If we recall Eqs. (5.3) we find that 

Ai 
1 

cos (r; = - 
64~ k mk ’ c 

1 
$+osii; = -xfitk , 

64~ k 

B~cos& = &xv&k. 
k 

So AH{ loCt becomes 

AH; loct= &(21x)280&!h - ~(2’.)(%)bJ~mk T ,&~~k I 
k k k 

And the tuneshifts are 

Au= = &(2”bJ) c c!$ - $(21y%) c mk 
k k 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

Recalling that the amplitudes 4 and 4 are 4 = (21x@o)1/2 and 4 = (21,po)‘/2, we arrive 
at 

2x& = ;d;&lk- idixrnk, (5.26) 
k k 

and 
27rAu, = -id: c mk $ i.d: c fik . (5.27) 

k k 
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6 The Skew Octupole Term 

6.1 Beam Shape Distortions due to Skew Octupoles 

We recall that the skew octupole term in the Hamiltonian (1.3) is 

AH, Iso= - RB’ . 

6(h) 

[ (m%)“““y - (y)1’“y3] 
(6.1) 

If we expand this into harmonics we get 

AH3 !m= -(21,)3’2(21,)‘/2p, )3A1+, cos qlfm + 3A1+.,, cos q,-m 
m 

t-4 3+m COS Q3+m t As-m COS Q3-m) 

+(2I,)“‘“(2’x)““PO C(3B1+rn COS pl+m f 3B1-, COSpl-, 
m 

+B3+m ~0s p3+m + B3-m cos p3-m) 7 (6.2) 

where Ql+m = w+m-m8ta+, Ql-m = al-m-mB+U-, q3+m = a3+m-mf3+3U, -+- UY,‘q3-m = 

a3-,-mOt3u,-a,, plfm = P1+m-mfl+a+ 9 Pl-m = A-m-me+a-, P3+m = /?3+m-mB+ul + 3uy, 
P3-m = ,33-m-m0+ux - Se,, ai = ax * uy, and 

A *+me iQl+m 1 _ __ - c 167r k 
mkei(Q+ +mfl)k 7 

Al-,eial-m ixmke 
= 167r k 

i(Q.-tmd)k , 

A 3+me ia3+, 1 _ ___ - c 16~ k 
mkei(3Qz+Q,Smfl)k 7 

1 AJbmeiLY3-m - - - c 16~ k 
mkei(3Qx - Qy+m6)k 7 

B 
1 - itme ;Pl+m = - 

167r k mke c 
i(Q+tm6)k , 

Bl-mei~l-m = 1 c 7Tzkei( &- +md)k , 
167r k 

B3+,,,.ei@3+m = 1 C akei( Qx t 3QY + me), , 
167r k 

B3-meip3-m = $.!- 1 ~kei(Qs-3Qv+md)k . (6.3) 
k 

where Q* = Qz I Q,. Again here we assume skew octupoles with infinitesimal length !k 
and strengths 

1’2( Br& 

ww ’ 

1’2( Bre)k 

q&4 ’ 
24 
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Skew octupoles induce a second-order tuneshift, which we would like eventually to calculate. 
So instead of solving the equations of motion obtained from H3, we proceed by making a 
Moser transformation from (a,, IU) to (b,, J,), u = z, y, using the generating function 

G3 = u,J, + ayJy - /30(!2Jz)3’2( zZJ~)~‘~ C 
m 

2 sin ql+,,, 
+ 

where u* = uz f ur,. So the new Hamiltonian H4 is 

3A1-7n 
$ - sin ql-m $ 

A 3+m . 
m-(3u,+u,) s1n q3+m 

+ 
L-m 

m-u- m-(3u,-4 

+@3(2J~)3’z(2Jz)“2 C 
m 

s sin PI+, + !.I$jf sin pIem 
+ 

B 
I 3+m . B3-m . 

m-(u,+3u,) s1nP3+m + m-(u,-3uy) s1nP3-m 
9 

H4 = u,J, + uy Jy + AH, iso , 

sin q3+ 

) 

(6.5) 

(6.6) 
where AH4 IsO does not contain any zeroth or first-order terms in mk and mk. The first-order 
changes in I, and a, which are given by Eqs. (2.7) and (2.8) are explicitly the following 

SL = -(2L)““(2r,)““~O 1 
m I 

s cos ql+* + z (-0s Qlsrn A 3;"+3;",":'," 
S Y 

+ 
3A3-m 

m-(3u,-u,) ‘OS q3-m 1 + (2r,)“‘“(2rl)““po c 
m 

2 cospl+, 

3B1-7n B 
+- cospl-, i 

3+m 

m-(uz+3uy) 
COSP3+m + 

B3-* 1 (6.7) 
m-u- m-(uz-3uy) CoSp3-m ’ 

61, = (21.)3’2(21,)““&l c 
m 1 

-2 cos ql+m $ g co.5 QIArn - -;;;;;";;; 
z Y 

A3-m 

+m-(3uz-ug) 
cos q3-m 

I 
- (zr,)“‘“(2L)““aC 

m 
-g cosp1+, 

+ 

3B1-, 3B3+m 
t 

CoSP1-m - m-(uz+3uy) 
0X P3+m + 

3B3-m 

m-u- m-(u,-33yy) CoSp3+m 1 ’ (6.8) 
6~~ = 3(21z)1’2(21y)‘/2/?o C 

m 1 
2 sin qlSm + f-&f sin ql-,, + ~~~~~~~~ 

+ t Y 

+ 
-43-m 

m-(3u,-uy) 
sin qsmrn 1 - ( 21,)-‘/2( 21y)“‘“~~ 1 

m 1 

s sin pl+, 
+ 

3B1-, B 
i ~ sin pl-, + 

3+m 
sinp3+* + 

h-m . 

m-u- m-(u,+3u,) m-(uz-33yy) s1np3-m 1 ’ P-9) 
bay = (21,)-“2(21z)3’2~~ C 

m 

-i- A3-m 

m-(3u,-uy) 
sin qsvm 1 - 3(2~z)“2(21y)1’2~o C 

m 
s sinpl+, 

+ 
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3&-WA B 
+- sin pI-, + 

3+* 

m-(u,+3uy) 
SinP3+* + 

&t--m 

?72-Vv- 
m-(Vz-3uy) sinps-, 1 . (6.10) 

These changes will yield the changes in amplitudes and phases. But let us first simplify 
Eqs. (6.7) to (6.10) by performing the summation over the harmonics with the aid of for- 
mula (2.18). Th e result of the summation is 

c A I+meiQlcm = e++ ( B3 + iA3) , 
m m-u+ 

c 
A1-* iq,-, -e = ei4- ( B4 + i.q4) , 

m m-u- 

c m rn-flYzyug)’ 
iq3+m _ - ei(3$z+h)(Bl + iAl) , 

c 
h-m 

m-(3u,-u,) 
eiq3-* = ei(34z-h)(B2 + iA2) , 

m 

c 
B peiPl+m _ I+* - ei4+( B5 + iAs) , 

m m-u+ 

c 
Bl-* iplem -e = ei4-( B6 + iA6) , 

m m-u- 

c 
B 3+m 

m m++3~,) 
eiP3+* = ei(4z+3b)( B7 + iA7) , 

c 
h-m eip3-m = ei(~.-3h)(Bg + iAs) . 

m m-(u,--3u,) 
(6.11) 

where g& = g& f c$~. Th e various sets of distortion functions are 

-2sina(~u 
t 

*u ) c 
Y k 

T cos[(3~:k*~~k)-(3~E~lCty)--(3u= f uy)] , 

Ad3+=k+y) = B;,,(3&i$y) , 

B3(7,b+) = -2sijTu+ F y ~~~(~;k-~+-Tu+) T 

B&L) = -2si;av- $ co+,&-$--nu-) 7 

B&M = - ’ C 2 cos+;,-$J* -nu*) , 
2sinnuk k 8 

B7,e(?Clsk3$~~) = - ‘- ’ c mk C0s[(~~k~3~~k)-(~,-3~y)-T(u~+3uy)] , 
2sinr(uz*3uy). k 8 
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A7,8(1CIz f WY > = Bs,,(?h f 3$,) , (6.12) 

where $+ = Q2 zt r,& and $‘z and $, ‘are defined in Eq. (2.21). 
Recalling that the distortion of the amplitudes and phases are given by Eqs. (2.12) and 

(2.17) and using Eqs. (6.7) to (6.11), we arrive at 

bJL, = 3d;&{(A 3sin$+-B3cos4+) + (A~sinqb--B4cosr$-) 

-[.41 sin (3&~q5~)- B1 cos (3qL+&)] + [AZ sin(3&-&)-B2 cos (3~$~-#~)]} 

-&{a( As sin 4+ - B5 cos 4,) t 3( Ag sin & - BG cos &-) 

+[A7sin(~,t3~y)-B7cos(~,+3~y)] + [A~sin(&-3&)-B~cos(qS,-3~,)]}, 

6R, = dz{3(A 3 sin cj+ - B3 cos 4,) - 3( A4 sin C#J- - B4 cos qS-) 

L[A~sin(3+,+~y)-B~cos(3qLt&,)] - (A~sin(3~,-q+,)-B2co~(34&-qbY)]} 

-3&d:{ (A5 sin ++ - BE cos 4,) - (As sin c$- - Bs cos t$- ) 

-IA7sin(q5,-t3qSy)- 

aij, = 3d&&3(*4 

B7cos(4,+3#,)] - [Assin(~,-3~,)-Bsco~(~,-3~~)]}, 

3 cos 4+ t B3 sin c$+ ) t 3( Ad cos qS- + B4 sin 4- ) 

+[.41cos(3~,t~,)+B1sin(3~,t~,)] -t [Ascos(39L-4,)+B2sin(34,-4)]} 

-2{3(4scos4+tBssin$+) + 3(AGcosqS- tBssin&) 

-[A7cos(~,t3~y)+B7sin(~,+3~y)] t [Ascos(~,-3~,)+Bgsin(~,-3~,)]}, 

4, = 
A: 
$3(A 3 cos 4+ t B3 sin 4+ ) + 3( Ad cos qb- t Bq sin c$- ) 

t[-41cds(3~,t~,)+Blsin(3~,$~,)] t [Azcos(34,-&)+B2sin(34,-4,)]} 

-3-&&{3(AScos4+tBgsin++) t 3(Ascos4-+Bssin4-) 

-[-~~~os(~,+3~,)+B~sin(~,+3~,)](As~0~(~,-3~~)+B~sin(~,-3~,)j} . 

(6.13) 

6.2 Second-order Tuneshifts 

Skew octupoles do not produce any first-order tuneshifts. The first-order perturbation 
Hamiltonian which has the form x3y - xy3 or cos3 & cos &y - cos & cos3 C& averages to zero, 
therefore the first-order tuneshift vanishes. In order to obtain the second-order tuneshifts 
we need to evaluate the second-order terms in the Hamiltonian Hq. From the generating 
function Gs of Eq. (6.5), we get 

(21z)3’2(21,)1’2 = (2Js)““(2Jy)“‘(1 - 3~o(2J~)‘12(2Jy)“2 x 
3A 3A1-m 

x X(2 cos q1+* $ - cos q1-* + . . . 
m m--u+ m-u- 

(6.14) 

and similarly for ( 21y)3/2(21z) ‘j2. Then we can write the second-order terms in the Hamil- 
tonian and from them keep only the B-independent terms which are 

AH; Iso= (2J.)2(2Jy)P,zF (; [$ + f& + mm3;:;uyj + m-;;;;l,,] 
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COS(P*+m-al+m) + 

If we sum over the harmonics we obtain 

c 
Af+m _ - - 

m m--v+ 

c 
Af-m - = 

m m-v- 

c 
Afi+m 

m m-(3v,+v,) = 

c 
4-m 

m m-(3v,-v,) = 

c 
BIZ+m _ - - 

m m-vt 

c 
K7-L - = 

m m-v- 

c 
%-cm 

m m - (vzt3vg) = 

c 
832-m 

m m-(v,-3vy) = 

c Al+m&+m 
m-v+ 

COS (P*+m-al-m) = 
m 

& z(Bs-)k , 
k 

c 
Al-mBl-m 

m m-v- 
COS(&-m-1 -m) = j& x(B,fi)k . 

k 

Now we are in a position to calculate the tuneshifts 

Av, = ~d~d~~[3(9B3m+9Blm-3B,m -3B2m) - 4(9B3rF2-9B4ti)jk 
k 

(6.16) 

t -&t; x[3(9B+9B,m -3B,rti -3B,?ii) - 4(9B3fi+9&fi)]k 
k 
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t- liTd: C(9B3rn-9Bsrn$~~m-B,m)k , 
k 

and 

Avy = -&dz ~[3(9B3mt9B4m$3Blm+3B2m) - 4(9BgTz-9B4?iz)]k 
k 

+&d;d;~[3(9Bs+9Bsmt3BrriL3Bs+z) - 4(9B3%t9&fh)]k 

t~A:~;SB,riltgB,ril+Birii+Bal)k. 
k 
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(6.17) 

(6.18) 

7 Applications 

Here, we present some examples in order to, first illustrate how these form&z can be 
used and second to show the degree to which canonical Hamiltonian formalism provides a 
faithful description of the nonlinear effects on the motion of the beam in the machine. In 
the first example, the above formulation will be used to display the beam shape distortions 
due to sextupoles which will be compared with experimental data. In the second example, 
we show how one can have control over the amplitude dependence of tune using a set of 
octupoles. 

7.1 Beam Shape Distortions 

In 1985 some studies of the perturbation of the motion by nonlinearities were made in 
the Fermilab Tevatron.5@*7 In particular, 8 normal sextupoles at stations 32, 34, 36, 38 in C 
and F sectors were powered in pairs so as to excite the resonance at the betatron oscillation 
tune of 19 l/3. The Tevatron injection kicker produced a horizontal betatron oscillation 
with an initial amplitude such that a particle at the centroid would perform a stable motion 
close to the separatrix. Figure 1 is the phase space plot of the motion described above with 
small-amplitude tune 19.34 in dots. The horizontal axis is displacement z from the central 
orbit in mm. The vertical axis is z’ normalized to mm. 

There was no oscillation induced in the vertical plane, hence the vertical motion was much 
smaller than the horizontal. Also, there was practirally no linear coupling in the machine. 
Within these bounds (the absence of both vertical motion and coupling), the problem can be 
simplified to the study of only one plane instead of -l-dimensional phase space. Even though 
it may seem as a digression, we will proceed with the justification of our assumption on the 
absence of linear coupling. 

In a machine, where the only nonlinearities are introduced by normal sextupoles, and 
where the vertical motion is negligible compared to the horizontal, linear coupling is intro- 
duced through skew quadrupoles only. Indeed, let us start from the Hamiltonian 
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Figure 1: Phase space plot from experimental data (dots) and the predictions of perturbation 
theory (solid), in the presence of sextupoles. 

30 



FN-493 

The equations of motion for X and Y are 

,t + K&)X = ZY - &#x* - Y”) ) 

j; + K,(s)Y = gx + z;x, . 

V-2) 

(7.3) 
From Eq. (7.3) we see that even though we may start from Y = 0, a Y-motion can develop 
due to its X-dependence through the skew quadrupole term (B:/Bp)X. The traditional 
way to minimize the coupling is to adjust the skew quadrupole strength so as to minimize 
the separation of the two observed tune lines (vr, ~2) and hence the coupling:5 A measure of 
the linear skew field in the Tevatron is the parameter 

V-4) 
which can be measured easily from the relation 

IY--*rmhl = 21kl - (7.5) 
-In this experiment the optimum value of the current through the skew quadrupoles was 
found to be -6.53 A at 400 GeV. The corresponding value of the linear coupling parameter 
was 

lkl z .014 (7.6) 

In the presence of a small but not vanishing Ikl, resonances of the form v, & vy = m, m being 
an integer, could be excited (see the skew quadrupole term analysis we did in Sec. 2). In 
order to reduce such a possibility, the tunes were split as far apart as possible so that their 
separation was 

Av = 0.1014 V-7) 

So the Hamiltonian which describes the above experimental situation where both vertical 
motion and z-y coupling are absent is 

H = ;[P:+K,(s)x*] + B” 
2x3. 

WP) 
(7.8) 

This expression comes from the general Hamiltonian (1.1) w h ere the only nonlinear contri- 
bution comes from the normal sextupole term. 

The equations describing this ‘distorted’ one dimensional motion are 

x = 6x + (4ta)cos(qfJ,+6$,) ) ~W 

2’ = 62’- (4+64)sin(qLt6qL) , (7.10) 

where 64 and 64, are the distortions of the amplitude 4 and phase & due to normal 
sextupoles and they are given by the one degree of freedom version of Eqs. (3.27) and (3.28) 
correspondingly, namely, 

6-k = A:[(& sin 3& - B3 cos 34,) - (Al sin &- B, cos &)I , (7.11) 
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64, = 4[(Aa cos 3& +,B3 sin 34,) f (Al cos g& + I31 sin q&)1 . 

The closed orbit distortions 52 and 6~ are given by* 

(7.12) 

6z = -2di&, (7.13) 

6z'= -2d;A1. (7.14) 

The experimental situation under consideration, with 8 normal sextupoles of 15 amperes 
excitation, corresponds to &Br = 7.09 x 10e4, A,& = -.1064, &Al = -1.88 x 10S3, 

4A3 = -.1137 at the location of the horizontal beam position monitor HE24. If we use 
these numbers to plot Eqs. (7.9) and (7.10), we obtain the solid curve in Fig. 1 which clearly 
follows the real motion very closely. 

7.2 Tuneshifts 

Let us consider the problem of devising a set of oct.upoles to control the amplitude 
dependence of tune in both degrees of freedom in Tevatron, without driving any res0nances.s 

Octupoies give rise to amplitude dependent tuneshifts which, according to Eqs. (5.26) 
and (5.27), are given by 

2nAu,= 

and 

2rAyY= 

Let us call 
1 (Bp)k Ik --= 

PO w3P) ? 

(7.15) 

(7.16) 

(7.17) 

since it is a measure of the current through the k-th octupole. So the expressions for the 
tuneshifts take the form 

and 

In one degree of freedom, these expressions are reduced to 

(7.18) 

(7.19) 

and so, it is clear that the amplitude dependence of the tune can be controlled by adjusting 
the current II, through the octupoles. The next question is to find the octupole configurations 
which do not excite any resonances. Normal octupoles can excite half-integer resonances, 
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2u, = m, u = CC, y, or 2(vz f v~) = m, where m is an integer, and quarter-integer resonances, 
41/, = m, u = 2, y or 4(V3 f ug) = m [this can be seen easily from Eqs. (3.14)]. However, if 
one chooses the location of the octupoles carefully the resonant driving terms, more or less, 
cancel each other, so the octupole configuration as a whole does not excite any resonances. 
In this particular case, if we power 4 octupoles Or, 02, 03, 04 of the same polarity in series, 
the phase advance between 2 adjacent octupoles being 136”, the contribution to the above 
mentioned resonances is small. A clear way to see this, is by representing graphically the 
contributing terms to the summations of (5.3), 

C- mkei(Wz+m@)k 9 (7.21) 
k 

and 
c ,k,i(%?=+m@)k - 

k 
(7.22) 

If we substitute &(8)-~~0 for Q,, the above sums become 

c mkei[2tiZ+(m-2uz)@]k , 
k - 

(7.23) 

and 

c- mkei14?CIiZ+ (m-4uz)8]k , (7.24) 
k 

The summation is over the 4 octupoles. Near the resonances, m - 2u, z 0 and m - 4v, z 0, 
so the two sums become really 

(7.25) 
k 

and 

C- mkeiC4@z)k I (7.26) 
k 

which turn out to be small quantities as one can see from Fig. 2. Fig. 2(a) represents 
the contribution to the first sum from each octupole separately as well as the resultant 
contribution, which is indeed small. The horizontal tune is 37/2 = 19.5. Fig. 2(b) is the 
corresponding vector diagram for the quarter-integer resonance. Here the tune is 77/4 = 
19.25. 

In two degrees of freedom, we would like to control the following 4 quantities 

which are given by the expressions 

(7.27) 

(7.28) 

(7.29) 
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(a) b) 

Figure 2: Vector diagrams showing the driving terms for the resonances (a) 2u, = 37 and 
(b) 4u, = 77. (Recall that the integer part of the Tevatron tune is 19). 

We see immediately that only 3 out of the 4 quantities above are independent and so it is 
clear that we need to power the octupoles in 3 circuits with currents, say, Ilr12, 4. Each 
circuit will consist of 4 octupoles, according to the one degree of freedom analysis, so that no 
resonances will be excited. This results in the multiplicative factor 4 in the above expressions. 
Keeping this in mind, the problem takes the following matrix form 

6(2nAu,) 

W) 
6(27rAu,) 

6(27rAu,) 

, VZ) 

7 (7.32) 

or 
MI=V. 

34 
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That is, once we know the matrix M, and we are given D, we can solve for the appropriate 
octupole strengths, denoted by the column vector I above. 

So the question now is what the matrix A4 is, or equivalently, what the positions of the 
3 circuits should be around the ring. 

From Eqs. (7.33), we see that if we want to be able to solve for I, M has to be invertible, 
hence detM # 0. This imposes a constraint on the beta functions at the positions of the 3 
circuits. Specifically 

detM # 0 w 

z { (pl)l(p,),[(P~)Z(P~)3 - (p,2)3(p,2),] +- 

(Pt>2(P,>2[(P,‘,l(P,‘)3 - @)I(py2)31+ 

(p5)3(s,)3[(~~)l(p,‘)z - (p22)2(p;)l]} # 0 . 

The following is a set of sufficient conditions for the above relation to be true, 

(7.34) 

(Ps)Z(/%)J # (oz)3(&)2 7 (7.35) 

or 

(P43(PY)l # (P=>l(P,)3 7 (7.36) 

or 

(AM&h f ~PZMPYh * (7.37) 

This means the ratios of the horizontal to the vertical beta function in any two circuits should 
be different from each other. The solutions given above are in consistency with the situation 
at the Tevatron where 2 of the octupole circuits are placed at (/3=)r = lOOm, (&)i = 28m 
and (flZ)2 = 28m, (4,)z = 100m. 

Finally we would like to add one more comment. From the matrix form Eq. (7.32), we 
observe that the optimum situation is when each element of D is controlled fully by just one 
of the 3 circuits and not by a linear combination of all 3 of them. This translates into M 
being a diagonal matrix. Since it is impossible for M to be exactly diagonal, we can search 
for solutions where the diagonal elements of M are considerably larger than the off-diagonal 
ones. In fact, all we need is that the (1,l) 1 e ement of M be much larger than the (1,2) 
and (l,3) elements. Similarly the (2,2) 1 e ement be much larger than the (2,l) and (2,3) and 
the (3,3) element be much larger than the (3:l) and (3,2). Unfortunately a quick inspection 
shows that such a solution is impossible. So. one can not have an independent control over 
the tune variations with amplitude in the two degree of freedom case. 

However, one can think of a situation where the (1,l) element is larger than the (1:2) 
and (1,3), so it controls most effectively the first element of D, while (1,2) and (1,3) provide 
the “fine tuning.” Hence in the Tevatron, for example, one could place the first octupole 
circuit at a (/&)I of app roximately 1OOm (in the neighborhood of focusing quadrupoles) and 
(&)l z 30m, while the s_econd circuit could be at<(&)2 ==70m,.(&,)z =7Om, and the third at 
(,&), 230m (in the neighborhood of defocusing quadrupoles) and (&)3 ZlOOm. 
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Remarks 

1. Usually the strength of a normal multipole is much bigger than that of the corre- 
sponding skew multipole. Therefore, the tuneshifts due to skew multipoles are much smaller 
and can be neglected in most cases. Furthermore, the tuneshifts due to normal octupole are 
of first order while those due to a skew octupole are of second order. Thus the latter can be 
neglected. 

2. There is no closed orbit distortion due to skew quadrupoles, octupoles and skew 
octupoles. In all these cases the jumps that x’ and y’ undergo when the particle crosses the 
multipole, are such that they average to zero. 

3. A derivation of the generating function Gs is given in the appendix of Ref. 4. 
4. A more straightforward derivation of the distortion functions is given implicitly in 

Ref. 9. Starting from the Hamiltonian expressed in terms of action-angle variables, one 
integrates the equations of motion directly to get the distortion of the amplitudes and phases. 
From these expressions the distortion functions can be read out readily. Even though it may 
seem that the derivation we followed throughout this paper is unnecessarily elaborate, there 
is an advantage to the method: By expanding the multipole terms into harmonics and then 
summing them up, one can understand and treat the resonance cases much easier. All is 
needed is to keep the resonance’ term and neglect the rest of the harmonics. 
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