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Motivation

Analysis of the beam instabilities is an important part of an
accelerator design. In the design phase one is mostly interested in
the threshold of the instabilities. Additional information can be also
obtained from the knowledge of the growth rate of the instability.
This means that a full simulation of the beam dynamics is not
needed—it is enough to solve a linearized system of equations in the
vicinity of the equilibrium state of the beam.

Solution of linearized Vlasov equation for MWI was first
implemented in a code by Oide&Yokoya in 1990, and several
important results were obtained in the past with that code.
Unfortunately, the code does not always give reliable results. In
SLAC we rely on (nonlinear) Vlasov-Fokker-Planck solver originally
developed by R. Warnock.
In this talk I will advocate for a different approach to solution of the
linearized Vlasov (LV) equation which uses a simple discretization
scheme and some well developed, standard computational tools.
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Outline of the talk

Introduction and a recent paper on MWI.

Coasting beam model and the Keil-Schnell stability criterion.
This is exactly solvable and can be used for benchmarking
new algorithms.

Coasting beam with periodic boundary conditions,
discretization of the LVE and comparison with the continuous
coasting beam.

LVE for a bunched beam and its discretization.

An example of numerical solution for the bunched beam and
challenges.

3/38



Motivation Vlasov eq. Instability Periodic Discretization and analysis Bunched beam Conclusions

Recent study of MWI

In a recent paper (K. Bane, Y. Cai and G. Stupakov, PRST-AB, Oct.
2010) we studied MWI with the goal to compare a full (nonlinear)
Vlasov-Fokker-Planck solver (VLF code by Y. Cai, based on the original
code from R. Warnock) and a LV code (G. Stupakov).
Threshold of the MW instability for a broadband resonant impedance
with Q = 1.
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CSR induced microwave instability

CSR impedance with shielding by parallel conducting plates.
Threshold of the MWI instability is a function of the shielding
parameter Π.
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Infinitely long coasting beam

The beam occupies the region −∞ < z <∞, has some energy
spread, and is uniform in equilibrium (no z-dependence).
The distribution function f(t, z, η) satisfies the Vlasov equation

∂f

∂t
− cµη

∂f

∂z
+ K

∂f

∂η
= 0

µ the slip factor (assumed positive), η is the relative energy
deviation, and z is the longitudinal coordinate in the beam.

∫
dηf

is equal to the number of particles per unit length.

K(t, z) = −
cre

γ

∫∞
−∞ dz ′w(z ′ − z)

∫∞
−∞ dηf(t, z ′, η)

with γ the relativistic factor and w the wake per unit length of
path. Positive values of w correspond to the energy loss.
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Perturbation and linearization

Assume an equilibrium distribution function with rms spread ση

f0(η) =
1

ση
F0

(
η

ση

)
, F0(x) = (2π)−1/2e−x

2/2

In equilibrium K0 = 0. Assume a small deviation from the
equilibrium, f = f0 + f1, K = K1. Introduce dimensionless variable
p = −η/ση.
Linearized Vlasov equation

∂f1
∂t

+ cµσηp
∂f1
∂z

−
1

ση
K1
∂f0
∂p

= 0

with

K1(t, z) = −
creση

γ

∫∞
−∞ dz ′w(z ′ − z)

∫∞
−∞ dpf1(t, z ′, p)
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Dispersion relation

Consider a perturbation with the wavenumber k and the frequency
ω,

f1(t, z, p) = φ(p)e
−iωt+ikz, K̂1 = Qe

−iωt+ikz.

Introduce the longitudinal impedance Z(k)

Z(k) =
1

c

∫∞
−∞ dξw(ξ)eikξ

The dispersion relation

1 = i
cre

γµσ2η

Z(k)

k

∫∞
−∞

∂F0/∂p

p− a
,

where a = ω/cµkση. From this equation, for a given k, one finds
a and ω = acµkση (in general complex).
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Dispersion relation

The function

G(a) =

∫∞
−∞

∂F0/∂p

p− a

is defined in the complex plane of variable a.

A more accurate derivation that uses the Laplace transform instead
of the Fourier one shows that the integral representation is valid in
the upper half-plane of the complex variable a (Imω > 0), and
should be analytically continued to the lower half-plane. It turns
out that the result (for a Gaussian F0) is expressed in terms of the
error function of a complex argument.
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Dispersion functions

Plot of the function G(a).

10/38



Motivation Vlasov eq. Instability Periodic Discretization and analysis Bunched beam Conclusions

Broadband resonant impedance

I will use the broadband resonator wake. It depends on two
parameters, Q and ω0, and for positive z is

w(z) =
Rω0
Q
e−zω0/2cQ

(
cos(zω1/c) −

sin(zω1/c)√
4Q2 − 1

)

with w = 0 for z < 0 and ω1 = ω0/
√
1− 1/(4Q2). The quantity

R is the shunt impedance per unit length.
The impedance

Z(k) =
R

1+ iQ(ω0/kc− kc/ω0)

11/38



Motivation Vlasov eq. Instability Periodic Discretization and analysis Bunched beam Conclusions

Broadband impedance

In all calculations I used Q = 1.

0 2 4 6 8 10 12

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

zΩ0/c

w
Q

c/
R

Ω
0

12/38



Motivation Vlasov eq. Instability Periodic Discretization and analysis Bunched beam Conclusions

Dispersion equation for the broadband impedance

Using dimensionless wavenumber κ = kc/ω0 the dispersion
relation can be written as

1 = iS
Z(κ)/R

κ
G(a)

with

S =
reIbRc

eγµσ2ηω0

where Ib is the beam current. The dimensionless frequency
Ω = aκ = ω/ω0µση is the frequency ω measured in units of
ω0µση.
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Dispersion curves

The solutions of the dispersion relation for S = 1, 1.5, 2.
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The Landau damping suppresses the instability for a small currents
and/or short wavelengths. The threshold of the instability is at
S ≈ 1.45.
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Unstable eigenmodes

The eigenmodes for S = 2 and κ = π/3.
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Periodic system

For a numerical solution we need to make the length of the system
finite. Impose periodicity with a period L, that is
f(t, z+ nL, η) = f(t, z, η) for any integer n. Also introduce
periodic wake

w̃(z) =

∞∑
k=−∞w(z+ kL)

If the period is long, results should be close to that of the infinite
system. I choose L = 12c/ω0.
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Periodic system

In the LVE K1 becomes a periodic function of z

K1(t, z) = −
creση

γ

∫L
0

dz ′w̃(z ′ − z)

∫∞
−∞ dpf1(t, z ′, p).

Our analysis for the infinite system can now be repeated for the
periodic one with the only constrain that the wave number k now
takes discreet values only, k = 2πn/L, where n is an integer. The
stability condition does not change much.

Correspondingly, the impedance now is

Z̃(k) =
1

c

∫L
0

dξw̃(ξ)eikξ

If L is large, it is almost the same as for the infinite system.
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Solution for the periodic system

The solution for the periodic system (for our parameters) is almost
the same as for the continuous one, but for
κ = π/6, π/3, 2π/3, . . ..
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The solutions of the dispersion relation for S = 1, 1.5, 2.

18/38



Motivation Vlasov eq. Instability Periodic Discretization and analysis Bunched beam Conclusions

Dimensionless variables

Introduce dimensionless variables ζ = zω0/c, l = Lω0/c = 12,
and τ = tµσηω0 and transform the equations to the dimensionless
variables

∂f1
∂τ

+ p
∂f1
∂ζ

+ K̂1
∂F0
∂p

= 0,

where K̂1 = −(I/ecσ3ηµω0)K1

K̂1(τ, ζ) = S

∫ l
0

dζ ′W(ζ ′ − ζ)

∫∞
−∞ dpf1(τ, ζ ′, p),

where we introduced the dimensionless wake W = (Qc/Rω0)w̃.
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Discretization of the periodic linearized equation

Make a mesh in ζ with the mesh size ∆ζ = l/n and the nodes
ζ1, ζ2, . . . ζn such that ζ1 = 0 and ζn = l− ∆ζ (due to periodicity,
ζn+1 = l is the same as ζ = 0).

The mesh in p is p1, p2, . . . , pm, with the mesh size ∆p, uniformly
divides the interval from −pmax to pmax.

pmax

-pmin

l
Ζ1 Ζ2 Ζn

p1

p2

pm

2 4 6 8 10

Ζ

- 4

- 2

2

4

p

The function f1 taken at the
nodes is denoted fi,j, where the
first index denotes position in ζ
and the second one in p;
analogously the derivative
∂F0/∂p taken at pj is denoted
F ′0,j. The function K̂1 taken at ζi

is denoted by K̂1i and the
discretized wake Wi =W(ζi).
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Discretization of the periodic linearized equation

Discretized system

∂

∂τ
fi,j = −pj

fi+1,j − fi−1,j
2∆ζ

− K̂1iF
′
0,j.

and

K̂1i = S∆p∆z

n∑
l=1

Wl−i

m∑
q=1

fl,q

(one can also use Simpson method, or any other weighted
approximation, for numerical for integrals).
This is a system of mn ODEs with constant coefficients. Its
solution (if not degenerate) consists of mn eigenmodes with time
dependence eλτ. The most unstable solution has the largest Re λ.

λfi,j = −pj
fi+1,j − fi−1,j

2∆ζ
− K̂1iF

′
0,j.
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Analysis of the discretized system

Eigenfunctions of the discretized system depend on ζ via eiκrζi

(with κr = 2πr/l, r = 0, 1, 2, . . . n− 1).

fi,j = Aje
iκrζi , K̂1,i = Be

iκrζi ,

For each κr this system has m eigenvalues Ω. This splits mn
eigenvalues into n sets of m eigenvalues.

Substitute into equations and and replace λ→ −iΩ. The
discretized dispersion relation

1 = S∆p∆z
∑
l

Wle
iκrzl

∑
j

F ′0,j

i(Ω− pj
sinκr∆ζ
∆ζ )
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Discretized dispersion relation

It can be written similar to the continuous case

1 = iS
ZD(κr)/R

κr
GD

(
Ω

κr

)
with

ZD(κr)/R = ∆p
∑
l

Wle
iκrzl

GD(a) = ∆z
∑
j

F ′0,j

pj
sinκr∆ζ
∆ζκr − a

The discretized dispersion function GD lost the property of
analyticity in the complex plane a (it has poles on the real axis
Ima = 0)!
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Discretized function GD

Plots of real and imaginary parts of the function GD (with
sinκ∆ζ
∆ζκ → 1)

GD agrees very well with G in the half-plane Ima > 0, however for
Ima < 0, GD 6= G (we cut out a narrow stripe in the vicinity
Ima ≈ 0). Hence we cannot find Landau damped modes in the
discretized system, but the unstable ones should be the same as for
the continuous one!
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Discretized function GD for Ima ≈ 0.

Discretized GD function (magenta) and continuous function G
(blue) for small Ima. The function GD is computed for
pmin = −4, pmax = 4 and ∆p = 0.125.
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Eigenvalues for the discretized dispersion function

Imaginary parts of Ω for eigenmodes for S = 2 κ = 4π/l = π/3
for pmin = −4, pmax = 4 and ∆p = (pmax − pmin)/100 and
∆ζ = L/100.

0 20 40 60 80 100

-0.2

-0.1

0.0

0.1

0.2

Mode number

Im
W

The roots always come in pairs, ω and −ω. In addition to the
physical mode with ImΩ ≈ 0.3, there are many spurious modes,
but they all have small values of ImΩ.
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Eigenvalues for the discretized function

Imaginary parts of Ω versus S for eigenmodes with κ = 2π/l = π/6
(blue), κ = 4π/l = π/3 (red) and κ = 8π/l = 2π/6 (green) for
pmin = −4, pmax = 4 and ∆p = (pmax − pmin)/100 and ∆ζ = L/100.
Solid lines—continuous model, dots—the discretized one.
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Conclusion: the discretized model correctly finds unstable modes. It fails
in predicting the damping rate of the stable modes, but we do not care
about those.
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Spurious modes vs number of mesh nodes

The max values of ImΩ for spurious modes decreases (linearly)
with the mesh size.
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Horizontal axis shows the number of nodes in ζ (equal to the
number of nodes in p). The line is a hyperbola fit.
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Eigenmodes of discretized system

Let us pretend that we do not know that eigenmodes ∝ eiκrζi and
try to solve the original eigenproblem. If F is a vector of fi,j then
we have the eigenvalue problem

λF = A · F

The length of the vector F is mn ∼ n2 (if m ∼ n), the size of the
matrix A is m2n2 ∼ n4. This matrix is not sparse. One would like
to be able to solve m ∼ n ∼ 200− 400, then
m2n2 ∼ 1.6× 109 − 2.6× 1010. Standard solvers cannot do such
large matrices.
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Using ARPACK

ARPACK is a software package that can find several eigenvalues of
a large sparse matrix with the largest values of real part. It is based
upon “an algorithmic variant of the Arnoldi process called the
Implicitly Restarted Arnoldi Method (IRAM)”. One of the options
of the ARPACK is that the user provides a subroutine which
computes A · F , instead of A (then the matrix can be not sparse).
The ARPACK is also implemented as eigs function in Matlab.

30/38



Motivation Vlasov eq. Instability Periodic Discretization and analysis Bunched beam Conclusions

Solving complete discretized system with eigs

I computed the eigenvalues and eigenfunctions with Matlab eigs function.
I used the matrix 400x400 (40 min of calculation with a good initial
value), smaller matrices run faster. The largest ’lr’ eigenvalue found (out
of 2.56× 1010) is Ω = 0.2634+ 1.4066i, compared with the continuous
model 0.2633+ 1.4069i.

Real and imaginary part of the eigenfunction with κ = 4π/l = π/3 and
S = 2.
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Bunched beam

For a bunched beam one has to solve first the Haissinski equation and
find an equilibrium for the beam.

f0(η, z) =
1

ση
F0

(
η

ση

)
N(z), K0(z) 6= 0

Dimensionless variables,

ζ =
z

σz
, p = −

η

ση
, τ = tωs0 , I =

reNb

2πγνs0ση
w(0)

and
F0(p, ζ) = F0(p)N(ζ)
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Solution of Haissinski equation

The broadband resonant impedance with Q = 1 and ω0σz/c = 1,
bunched beam
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Bunch distribution, I=15.

Solution of the Haissinki equation.
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Discretized system of equations, bunched beam

Again, solutions are ∝ eλt

λfi,j = −pj
fi+1,j − fi−1,j

2∆ζ
− K̂0i

fi,j+1 − fi,j−1
2∆p

− K̂1iF ′
0,j

and

K̂1i = I∆p∆z

n∑
l=1

Wl−i

m∑
q=1

fl,q.

It turns out that the ARPACK does not scale well for this system
(too slow with n ∼ m > 100).
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Using EXPOKIT

There is a software package, EXPOKIT, which computes
exp(τA) · F “using Krylov subspace projection techniques”. It also
has an option of supplying to it a subroutine that computes the
product A · F instead of A itself.
If the system is unstable, then for τ large enough, only the
eigenvalue with the largest real part survives. Starting from a
random Finit

Ffin = exp(τA) · Finit
gives Ffin which is close to the eigenvalue with the max real part.
The growth rate can then be found using norm ||...||

eτRe λ ≈ || exp(τA) · Ffin||/||Ffin||
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Threshold of the instability

Growth rate versus current for a bunched beam with resonant
broadband impedance (Q = 1 and ω0σz/c = 1): red—from our
PRST-AB paper, blue—new Matlab one (with EXPOKIT). Mesh
size up to 400×400.
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Unstable Eigenmode

Left: phase plot of an unstable eigenmode for I = 14.5, mesh:
250×250; right I = 13.5, mesh: 400×400.
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Conclusions

Solving LVE is usually sufficient for stability analysis on the
design phase, where the main issue is finding the threshold of
the instability and the growth rate.
LVE fails to predict Landau damped modes in the system, but
correctly finds unstable perturbations.
Numerical solution of LVE requires finding of the eigenvalues
with the largest real part of a huge system of linear equations.
ARPACK and EXPOKIT seem like good tools for this
problem. The algorithm can be implemented in a simple code.
ARPACK has a parallelized implementation.
Further optimization and extension of the method is
envisioned: better discretization algorithms; various
wakefields, including RW, CSR, etc. Benchmarking of the
method.
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