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Abstract
The cubic equation derived by B. Zotter has been popu-

larly used for electron storage rings to describe the scaling
law of potential-well bunch lengthening. This equation has
also often been used to calculate the effective impedance
when the bunch lengthening is measured or simulated. This
paper discusses the validity of Zotter’s equation and presents
an alternative but self-consistent equation for potential-well
bunch lengthening. Its applications to predicting bunch
lengthening and extracting effective impedance from bunch
length measurements are also addressed.

INTRODUCTION
Individual electrons oscillate around a fixed point in the

longitudinal phase space in electron storage rings. The RF
system creates a potential well that confines the beam in
a bucket. When the oscillations are of small amplitude,
the motion of the electrons is linear. Using the longitudinal
coordinate 𝑧 and momentum deviation 𝛿, the linear equations
of motion are [1]

𝑑𝑧
𝑑𝑠 = −𝜂𝛿, 𝑑𝛿

𝑑𝑠 = −𝑒𝑉rf𝜔rf cos 𝜙s
𝐸𝐶𝑐 𝑧. (1)

The following quantities are used: the electron charge 𝑒, the
speed of light 𝑐, the slip factor 𝜂, the RF voltage 𝑉rf, the RF
frequency 𝜔rf, the electron energy 𝐸, the circumference of
the ring 𝐶 and the synchronous phase 𝜙s. We assume that
the reference particle is moving at the speed of light, 𝑐. In the
presence of radiation damping and quantum excitation, the
beam reaches a stable equilibrium distribution in the longi-
tudinal phase space, which is Gaussian [2]. The momentum
spread 𝜎𝛿0 in an electron storage ring at equilibrium is de-
termined by the beam energy and the bending radii of the
dipole magnets but is not affected by the RF parameters 𝑉rf
and 𝜔rf (see Eq. (7.94) of [1]). Radiation effects cause the
beam to bunch, with an rms length of 𝜎z0 = −𝑐𝜂𝜎𝛿0/𝜔z0.
From Eqs. (1), the synchrotron frequency 𝜔z0 is defined by

𝜔z0 ≡ sgn[𝜂]√−𝑒𝑐𝑉rf𝜂𝜔rf cos 𝜙s
𝐸𝐶 , (2)

where sgn[] is the sign function. We define 𝜔z0 to have the
opposite sign of 𝜂 (this is the choice of the SAD code [3])
so that 𝜎z0 is always positive.

The longitudinal wakefields deform the potential well
created by the RF system. As a result, the equations of
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motion are modified to:

𝑑𝑧
𝑑𝑠 = −𝜂𝛿, 𝑑𝛿

𝑑𝑠 =
𝜔2

z0
𝜂𝑐2 𝑧 − 𝐹(𝑧, 𝑠). (3)

The wakefield term 𝐹(𝑧, 𝑠) is calculated from the convolution
of charge density and longitudinal wake function

𝐹(𝑧, 𝑠) = 𝐼𝑛 ∫
∞

−∞
𝑊∥(𝑧 − 𝑧′)𝜆(𝑧′, 𝑠)𝑑𝑧′, (4)

with the scaling factor 𝐼𝑛 = 𝑁𝑒2/(𝐸𝐶) = 𝐼𝑏/(𝑐(𝐸/𝑒)), the
line density distribution 𝜆(𝑧, 𝑠), and the wake function 𝑊∥(𝑧).
Here, 𝑁 is the bunch population, and 𝐼𝑏 = 𝑁𝑒/(𝐶/𝑐) is the
bunch current. The wake function and the corresponding
impedance are Fourier transforms of each other: 𝑊∥(𝑧) =

𝑐
2𝜋 ∫∞

−∞ 𝑍∥(𝑘)𝑒𝑖𝑘𝑧𝑑𝑘 and 𝑍∥(𝑘) = 1
𝑐 ∫∞

−∞ 𝑊∥(𝑧)𝑒−𝑖𝑘𝑧𝑑𝑧 with
𝑘 ≡ 𝜔/𝑐. Using the impedance, 𝐹(𝑧, 𝑠) can be rewritten as

𝐹(𝑧, 𝑠) = 𝑐𝐼𝑛
2𝜋 ∫

∞

−∞
𝑑𝑘𝑍∥(𝑘)�̃�(𝑘, 𝑠)𝑒𝑖𝑘𝑧, (5)

with the beam spectrum �̃�(𝑘, 𝑠) = ∫∞
−∞ 𝜆(𝑧, 𝑠)𝑒−𝑖𝑘𝑧𝑑𝑧. Since

𝑊∥(𝑧) and 𝜆(𝑧, 𝑠) are real, the reality condition applies:
�̃�∗(𝑘, 𝑠) = �̃�(−𝑘, 𝑠) and 𝑍∗

∥ (𝑘) = 𝑍∥(−𝑘).

THE CUBIC EQUATION FOR BUNCH
LENGTHENING

In [4], Zotter solved the equations of motion for a single
particle as described by Eqs. (3). The leading-order pertur-
bation from the longitudinal wakefields was found to shift
the incoherent synchrotron frequency. For electron storage
rings, Eq. (5.10) of [4] is of interest to us:

𝜔2
z = 𝜔2

z0 (1 − 𝜉𝑍1) , (6)

with 𝜉 = 𝜂𝜔2
0𝐼𝑏/(2𝜋𝜔2

z0(𝐸/𝑒)) and

𝑍1(𝜎z) = −
√2𝜋𝑐3

𝜔3
0𝜎3

z
Im (

𝑍∥
𝑛 )

𝑚=1

eff
. (7)

Here 𝜔z is the incoherent synchrotron frequency after bunch
lengthening, 𝜎z is the rms length of the lengthened bunch,
𝜔0 = 2𝜋𝑐/𝐶 is the revolution frequency, and (𝑍∥/𝑛)𝑚=1

eff
is the effective impedance for azimuthal mode 𝑚 = 1. The
effective impedance is a quantity used in collective instability
theories [5]. It is defined as follows:

(
𝑍∥
𝑛 )

𝑚

eff
=

∞
∑

𝑝=−∞

𝑍∥(𝜔𝑚𝑝)
𝑝 ℎ𝑚(𝜔𝑚𝑝)

∞
∑

𝑝=−∞
ℎ𝑚(𝜔𝑚𝑝)

, (8)
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where 𝑛 = 𝜔/𝜔0, 𝜔𝑚𝑝 = 𝑝𝜔0 + 𝑚𝜔z the mode frequencies.
The power density of the 𝑚-th mode is defined as

ℎ𝑚(𝜔) = �̃�𝑚(𝜔) ⋅ �̃�∗
𝑚(𝜔), (9)

with �̃�𝑚(𝜔) the Fourier transform of the line density of the
𝑚-th azimuthal mode. It was suggested in [4] that, when
using Eq. (8) to calculate 𝑍1, 𝜔𝑚𝑝 should be evaluated with
𝜔z = 0.

Usually, the ring length is much larger than the bunch
length, suggesting that the sampling frequency step 𝜔0 in
Eq. (8) is much smaller than the typical frequency of the
beam spectrum, that is, 𝑐/𝜎z0. With this condition, the sum-
mations over 𝑝 in Eq. (8) can be fairly replaced by integrals,
yielding

(
𝑍∥
𝑛 )

𝑚

eff
=

∫∞
−∞ 𝑍∥(𝜔)𝜔0

𝜔 ℎ𝑚(𝜔)𝑑𝜔
∫∞

−∞ ℎ𝑚(𝜔)𝑑𝜔
. (10)

For a Gaussian bunch, the power densities ℎ𝑚(𝜔) for 𝑚-
mode is given by

ℎ𝑚(𝜔) = (𝜔𝜎z/𝑐)2𝑚𝑒−𝜔2𝜎2
z /𝑐2. (11)

For the case of potential-well bunch lengthening, 𝜎z can
be replaced by 𝜎z0 so that (𝑍∥/𝑛)𝑚=1

eff is a constant machine
parameter independent of the bunch current. Note that the
effective impedance depends on the beam properties, but
the original impedance 𝑍∥(𝜔) only depends on the beam’s
surroundings [5].

For electron storage rings, the energy spread is constant
below the microwave instability threshold, resulting in

𝜎z𝜔z = 𝜎z0𝜔z0 = −𝑐𝜂𝜎𝛿0. (12)

Combining Eqs. (6) and (12), we arrive at Zotter’s cubic
equation for potential-well bunch lengthening:

𝑥3 − 𝑥 + 𝑐𝐼𝑏
𝜅𝜂𝜔0𝜎z0𝜎2

𝛿0(𝐸/𝑒)
Im (

𝑍∥
𝑛 )

𝑚=1

eff
= 0, (13)

where 𝑥 = 𝜎z/𝜎z0 and 𝜅 = √2𝜋. Note that from Eq. (6) to
Eq. (13), 𝜉𝑍1(𝜎z) is replaced by 𝜉𝑍1(𝜎z0)/𝑥3.

There are alternative ways of deriving the cubic equation
similar to Eq. (13) (for example, see Refs. [5–7]). Here,
we present a simple way that does not need the effective
impedance defined by Eq. (8). From Eqs. (3), we can ob-
tain the second-order differential equation of longitudinal
coordinate as

𝑑2𝑧
𝑑𝑠2 = −

𝜔2
z0

𝑐2 𝑧 + 𝜂𝐹(𝑧, 𝑠) (14)

We assume the incoherent synchrotron frequency with wake-
field perturbation is given by

𝑑2𝑧
𝑑𝑠2 = −𝜔2

z
𝑐2 𝑧. (15)

To find the explicit form of 𝜔z, we can approximate 𝐹(𝑧, 𝑠)
by taking the leading term that is linear to 𝑧. To do so, we
take the derivative over 𝑧 on the right side of Eq. (5) and
then average over the line density:

𝐹1 = ∫
∞

−∞
𝑑𝑧𝜆(𝑧, 𝑠)𝜕𝐹(𝑧, 𝑠)

𝜕𝑧

= 𝑖𝑐𝐼𝑛
2𝜋 ∫

∞

−∞
𝑑𝑘𝑘𝑍∥(𝑘)�̃�(𝑘, 𝑠)�̃�∗(𝑘, 𝑠).

(16)

From the reality condition of the impedance and beam spec-
trum, it follows that only the imaginary part of 𝑍∥(𝑘) con-
tributes to 𝐹1. Taking a Gaussian bunch and pure inductive
impedance 𝑍∥(𝑘) = −𝑖𝑘𝑐𝐿, one can obtain

𝐹1 = 𝑐𝐼𝑛
2𝜋

√𝜋𝑐𝐿
2𝜎3

z
. (17)

Alternatively, for an absolute impedance, the effective induc-
tance can be defined as follows [8]:

𝐿eff = 1
𝑐

∫∞
−∞ 𝑑𝑘𝑘𝑍∥(𝑘)�̃�(𝑘, 𝑠)�̃�∗(𝑘, 𝑠)
∫∞

−∞ 𝑑𝑘𝑘2�̃�(𝑘, 𝑠)�̃�∗(𝑘, 𝑠)
. (18)

For a Gaussian bunch, it becomes

𝐿eff = 2𝑖𝜎3
z

√𝜋𝑐
∫

∞

−∞
𝑑𝑘𝑘𝑍∥(𝑘)�̃�(𝑘, 𝑠)�̃�∗(𝑘, 𝑠), (19)

which is equivalent to

𝐿eff = − 1
𝜔0

Im (
𝑍∥
𝑛 )

𝑚=1

eff
(20)

with the effective impedance calculated by Eqs. (10) and (11).
The concept of effective inductance was first introduced by
K. Bane in [8].

If we replace 𝐹(𝑧, 𝑠) with 𝐹1𝑧 in Eq. (14) and compare
the resulting equation with Eq. (15), we can obtain

𝜔2
z

𝑐2 =
𝜔2

z0
𝑐2 − 𝑐2𝜂𝐼𝑛𝐿eff

4√𝜋𝜎3
z

. (21)

Using the relation given in Eq. (12), we arrive at a cubic
equation of bunch lengthening factor 𝑥:

𝑥3 − 𝑥 − 𝑐𝐼𝑏
𝜅𝜂𝜎z0𝜎2

𝛿0(𝐸/𝑒)
𝐿eff = 0, (22)

with 𝜅 = 4√𝜋. It can be seen that Eqs. (13) and (22) are
identical except for the constant 𝜅 in the denominator. We
conclude that the factor of √2𝜋/(𝜔0𝜏)3 for 𝑍1 in Eq. (5.9)
of [4] is incorrect and should be replaced by √𝜋/(2(𝜔0𝜏)3).
This conclusion will be justified in the following section.

The cubic equations (13) and (22) have been widely used
in electron storage rings. During the design and construction
phases, an impedance database can be created and used to
calculate the effective impedance. This can then be used to
predict the potential-well bunch lengthening using Eq. (22).
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During beam commissioning phases, beam-based measure-
ments are typically performed to extrapolate the effective
impedance or effective inductance, which is used to verify
the accuracy of the impedance database. A comprehensive
review can be found in [9]. The author of [9] suggests that
Eq. (22) is a model more consistent with the prediction of the
Haissinski equation [10] and with the measurements in the
electron storage rings. However, it is important to emphasize
that this consistency is conditional on the following factors:
(1) The total longitudinal impedance of the ring can be well
approximated by a pure inductance, 𝑍∥(𝑘) = −𝑖𝑘𝑐𝐿, with
the impact of its real part negligible. (2) The potential well,
which is distorted by wakefields, remains well quadratic so
that the lengthened bunch is close to Gaussian. These factors
allow us to replace 𝜂𝐹 in Eq. (14) with 𝜂𝐹1𝑧, where 𝐹1 is
given by Eq. (17). This leads to the cubic equation (22).
Typically, important sources of inductive impedance include
small 3D discontinuities, such as obstacles or cavities with
longitudinal dimensions comparable to or smaller than the
rms bunch length (𝜎z0), on beam pipes; small angle transi-
tions, such as collimators in colliders or tapers sandwiching
small-gap insertion devices in light sources, in flat chambers.
Small 3D discontinuities from the flanges and bellows are
common in all storage rings.

The cubic equation (22) may not apply well in some cases.
One example is damping rings, where small-angle transitions
are usually unnecessary. A good example is the SLC damp-
ing ring with the improved chamber [11], where the resistive
part dominates the total impedance [12]. Another example
is future circular colliders (FCCs), where the resistive-wall
impedance is dominant because of their large circumfer-
ences.

A SELF-CONSISTENT EQUATION FOR
BUNCH LENGTHENING

For electron storage rings, the circulating beam can be
modeled as a continuous distribution 𝜓(𝑧, 𝛿, 𝑠), with its evo-
lution governed by the Vlasov-Fokker-Planck (VFP) equa-
tion [13]. Specifically, when considering the synchrotron
motion, the VFP equation is [14]

𝜕𝜓
𝜕𝑠 + 𝑑𝑧

𝑑𝑠
𝜕𝜓
𝜕𝑧 + 𝑑𝛿

𝑑𝑠
𝜕𝜓
𝜕𝛿 = 2

𝑐𝑡𝑑
𝜕

𝜕𝛿 [𝛿𝜓 + 𝜎2
𝛿0

𝜕𝜓
𝜕𝛿 ] , (23)

with 𝑡𝑑 the longitudinal damping time. The equations of mo-
tion are given by Eqs. (3), with the line density distribution
𝜆(𝑧, 𝑠) = ∫∞

−∞ 𝜓(𝑧, 𝛿, 𝑠)𝑑𝛿.
The VFP equation has an 𝑠-independent stationary solu-

tion 𝜓0(𝑧, 𝛿) in the form of 𝜓0(𝑧, 𝛿) = �̂�0(𝛿)𝜆0(𝑧) below
the microwave instability threshold. The momentum dis-
tribution �̂�0(𝛿) is Gaussian with rms spread 𝜎𝛿0, and the
spatial distribution satisfies

𝑑𝜆0(𝑧)
𝑑𝑧 + [ 𝑧

𝜎2
z0

− 1
𝜂𝜎2

𝛿0
𝐹0(𝑧)] 𝜆0(𝑧) = 0. (24)

Here 𝐹0(𝑧, 𝑠) is from Eq. (4) with 𝜆(𝑧, 𝑠) replaced by the
equilibrium distribution 𝜆0(𝑧). The solution of Eq. (24) is

the so-called Haissinski equation [10]

𝜆0(𝑧) = 𝐴𝑒
− 𝑧2

2𝜎2
z0

− 𝐼
𝜎z0

∫∞
𝑧 𝑑𝑧′𝒲∥(𝑧′)

, (25)

with the new scaling parameter 𝐼 = 𝐼𝑛𝜎z0/(𝜂𝜎2
𝛿0) and the

wake potential of the bunch

𝒲∥(𝑧) = ∫
∞

−∞
𝑊∥(𝑧 − 𝑧′)𝜆0(𝑧′)𝑑𝑧′, (26)

With the synchrotron tune defined by 𝜈z0 = 𝜔z0/𝜔0, there
is 𝐼 = −𝑁𝑒2/(2𝜋𝜈z0𝐸𝜎𝛿0) [12, 15]. The stability of the
Hassinski equation is beyond the scope of this paper, and
the reader is referred to [16] and references therein.

Integrating over 𝑧 on both sides of Eq. (24) and recogniz-
ing that the center of mass of the bunch is

𝑧𝑐 = ∫
∞

−∞
𝑧𝜆0(𝑧)𝑑𝑧, (27)

we obtain 𝑧𝑐 = 𝐼𝜎z0𝜅∥, with the well-known loss factor

𝜅∥(𝐼) = ∫
∞

−∞
𝑑𝑧𝜆0(𝑧)𝒲∥(𝑧). (28)

In terms of impedance, it is

𝜅∥ = 𝑐
𝜋 ∫

∞

0
Re[𝑍∥(𝑘)]ℎ(𝑘)𝑑𝑘 (29)

with the spectral power density ℎ(𝑘) = �̃�0(𝑘)�̃�∗
0(𝑘).

Given the bunch profile 𝜆0(𝑧), by definition, the rms
bunch length is calculated by

𝜎2
z = ∫

∞

−∞
(𝑧 − 𝑧𝑐)2𝜆0(𝑧)𝑑𝑧 = ∫

∞

−∞
𝑧2𝜆0(𝑧)𝑑𝑧 − 𝑧2

𝑐 . (30)

We show how to calculate 𝜎z from Eq. (24). We can obtain
three terms by multiplying 𝑧 on both sides of this equation
and performing integration over 𝑧. The first term is a constant
-1 (consider that 𝜆0(𝑧) decays exponentially as 𝑒−𝑧2/(2𝜎2

z0)

when 𝑧 → ±∞, according to the Haissinski equation). The
second term equals 𝜎2

z + 𝑧2
𝑐 . The third term is an integration

that contains the wake function. Combining the three terms,
we can arrive at an equation that describes the potential-well
bunch lengthening

𝑥2 − 1 − 𝑐𝐼
2𝜋𝜎z0

𝑍eff
∥ (𝑥) = 0, (31)

where 𝑍eff
∥ is formulated by

𝑍eff
∥ = 2𝜋

𝑐 ∫
∞

−∞
𝑑𝑧(𝑧 − 𝑧𝑐)𝜆0(𝑧)𝒲∥(𝑧). (32)

In terms of impedance, it is equivalent to

𝑍eff
∥ = − ∫

∞

−∞
𝑑𝑘𝑍∥(𝑘)�̃�0(𝑘) [𝑖 𝑑

𝑑𝑘 �̃�∗
0(𝑘) + 𝑧𝑐�̃�∗

0(𝑘)] . (33)

Here, we define 𝑍eff
∥ as an effective impedance, which is

always real but not complex, to indicate bunch lengthening.
Equation (31) shows that the term 𝑍eff

∥ is a quadratic func-
tion of 𝑥, where 𝑥 is a function of the normalized current 𝐼
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(i.e., 𝑥 = 𝑥(𝐼)). Since Eq. (31) is derived from the Haissin-
ski equation without any approximations and the Haissinski
equation is the exact stationary solution of the VFP equation,
we conclude that it is a self-consistent equation for the po-
tential well lengthening applicable to electron storage rings.
We emphasize that Eq. (31) is not valid at beam currents
above the microwave instability threshold, where the beam
energy spread will increase.

Equation (32) shows that the effective impedance 𝑍eff
∥ is a

measure of the average stretching force over the whole bunch.
From the impedance viewpoint, Eq. (33) states that both the
real and imaginary parts of the impedance contribute to the
bunch lengthening when the density distribution is deformed,
although the imaginary part is usually the dominant source.

At 𝐼 = 0, the density distribution is Gaussian with 𝑧𝑐 = 0
and 𝑥(0) = 1. The bunch lengthening rate at 𝐼 = 0 is given
by 𝑥′

0 ≡ 𝑑𝑥/𝑑𝐼|𝐼=0 = 𝑐
4𝜋𝜎z0

𝑍eff
∥ (1). Here, the effective

impedance 𝑍eff
∥ (1) is given by Eq. (33) with 𝑧𝑐 = 0 and

�̃�0(𝑘) = 𝑒−𝑘2𝜎2
z0/2. It only depends on the imaginary part of

𝑍∥(𝑘), suggesting that the inductive part of the impedance
solely determines the lengthening rate of the bunch at zero
current. The relation between 𝑍eff

∥ and the normalized cur-
rent 𝐼 is complicated. Here, we only give the slope at 𝐼 = 0
as 𝑑𝑍eff

∥ /𝑑𝐼|𝐼→0 = 2𝜋𝜎z0
𝑐 [𝑥′2

0 + 𝑥″] with 𝑥″ = 𝑑2𝑥/𝑑𝐼2 to
be determined.

Further calculations can be carried out when a Gaussian
distribution with rms length 𝜎z and center of mass 𝑧𝑐 is
used to approximate the Haissinski distribution Eq. (25).
From Eqs. (28) and (33), the center of mass and effective
impedance are explicitly written as follows:

𝑧𝑐 = 𝐼𝜎z0𝑐
𝜋 ∫

∞

0
𝑑𝑘Re[𝑍∥(𝑘)]𝑒−𝑘2𝜎2

z , (34)

𝑍eff
∥ = −2𝜎2

z ∫
∞

0
𝑑𝑘𝑘Im[𝑍∥(𝑘)]𝑒−𝑘2𝜎2

z . (35)

The above quantities can be formulated explicitly for some
well-defined impedances in the literature. For more details,
the reader is referred to [17], where it is shown that 𝑍eff

∥ (𝑥)
has different scaling laws, depending on the properties of
specific impedances. In particular, when the ring impedance
is approximated by 𝑍∥(𝑘) = −𝑖𝑘𝑐𝐿eff, we immediately obtain
the cubic equation (22) from Eqs. (31) and (35). This justifies
Eq. (22) and leads us to conclude that the original Zotter’s
equation (13) should be recast with 𝜅 = 4√𝜋, as suggested
in [9]. Meanwhile, the conventional effective impedance
and inductance are connected to the newly defined effective
impedance 𝑍eff

∥ by

𝐿eff = − 1
𝜔0

Im (
𝑍∥
𝑛 )

𝑚=1

eff
=

2𝜎𝑧0
√𝜋𝑐

𝑍eff
∥ , (36)

and these quantities should be evaluated at zero bunch cur-
rent.

BUNCH LENGTHENING IN SUPERKEKB
As a specific example, we consider the high-energy ring

(HER) of SuperKEKB (the case of LER was discussed
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Figure 1: Pseudo-Green’s function wake and corresponding
impedance without CSR for SuperKEKB HER.

in [17]). Longitudinal wakes for various components have
been calculated using a Gaussian driving bunch with length
�̂�𝑧=0.5 mm and summed to create the pseudo-Green func-
tion wake [18] as shown in Fig. 1. The corresponding
impedance shown in the same figure is calculated by Fourier
transforming the wake data (indeed, the chirp-Z transform
is used to improve the frequency revolution). The decay
of impedance data at high frequencies is due to the cho-
sen 0.5mm Gaussian bunch, which acts as a Gaussian win-
dow function of 𝑒−𝑘2�̂�2

𝑧 /2. This is justified when the ra-
tio of the nominal length of the bunch 𝜎z0 to the length
of the driving bunch �̂�𝑧 is very large (for our example,
10). The bunch should not be strongly deformed or micro-
bunched, so the high-frequency impedances are not sam-
pled. The beam parameters used to solve the Haissinski
equation are beam energy 𝐸=7.00729 GeV, ring circum-
ference 𝐶=3016.315 m, slip factor 𝜂=4.543 × 10−4, bunch
length at zero current 𝜎z0=5.05 mm, momentum spread
𝜎𝛿0=6.3 × 10−4, and synchrotron tune 𝜈z0=-0.0272. The
scaling parameter at 𝑁 = 1011 is 𝐼 = 0.0212 pC/V. The
numerically obtained Haissinski solutions with bunch popu-
lations 𝑁 = (0.0471, 4.71, 9.42, 14.1)×1010 (corresponding
to 𝐼=(0.0001, 0.01, 0.02, 0.03) pC/V) are shown in Fig. 2.
The lengthening of the bunch and the centroid shift as a func-
tion of the normalized current are shown in Fig. 3. Using the
bunch length data from Fig. 3, the effective impedance 𝑍eff

∥ is
calculated by Eq. (31), as shown in Fig. 4. In this figure, we
also plot the 𝑥𝑍eff

∥ data, which corresponds to Zotter’s cubic
equation. According to the cubic equation, the inductance
impedance dominates the total impedance, and 𝑥𝑍eff

∥ should
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Figure 2: Haissinski solution for SuperKEKB HER with
𝑁 = (0.0471, 4.71, 9.42, 14.1) × 1010.
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be a constant or have a weak dependence on the bunch cur-
rent. Figure 4 shows that this is not the case for SuperKEKB
HER. Therefore, we conclude that Zotter’s equation does
not apply well to this ring. However, the same analysis for
SuperKEKB LER showed that 𝑥𝑍eff

∥ is fairly constant [17],
suggesting that a pure inductance is good enough to describe
the lengthening of the bundle in LER.

SUMMARY
Zotter’s equation is valid under the following conditions:

The longitudinal total impedance of the ring can be well
approximated by a pure inductance, and the impact of the
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Figure 4: Effective impedance as a function of normal-
ized current calculated from simulated bunch lengths for
SuperKEKB HER.

real part of the total impedance is negligible. The Haissin-
ski equation, a self-consistent solution of the VFP equa-
tion below the microwave instability threshold, has been
used to derive a new equation to describe potential-well
bunch lengthening. The effective impedance used to de-
scribe bunch lengthening has simply been redefined. This
new equation is useful for comparing impedance calcula-
tions with beam-based measurements in electron storage
rings.
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