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Connecting Hassinski equation and Zotter’s equation

* Haissinski equation [1]
- Stationary solution of Vlasov-Fokker-Planck equation.
- Bottom-up predictions of potential-well lengthening.
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o /otter’s equation [2]
- [Extraction of effective inductance from bunch length measurements.
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\/ 27 was used, but it is incorrect [3].
1] J. Haissinski, Il NuovoCimento B (1971-1996) 18, 72 (1973).

2] B. W. Zotter, Potential-well bunch lengthening, CERN-SPS-81-14-DI (1981).
3] V. Smaluk, NIMA 888, 22 (2018).




Principles derived from Hassinski equation

e Some principles can be trivially derived from Haissinski equation
- Starting from the differential equation instead
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- Center of mass: Sensitive to real part of impedance
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Principles derived from Hassinski equation

e Some principles can be trivially derived from Haissinski equation
- Peak position of bunch profile: Sensitive to real part of impedance
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- rms bunch length: Sensitive to imaginary part of impedance
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“Effective impedance” for bunch lengthening 4

Exact given Haissinski equation



Principles derived from Hassinski equation

e Some principles can be trivially derived from Haissinski equation
- Zotter’s equation can be easily obtained with conditions of pure inductance Z”(k) = — ikcL and Gaussian bunch

profile. Exactly, the numerical coefficient should be 4\/7_z.

I
-1 - —278M) = 0

277:620

l cl L
x3_x_D=() D: ............... :

- Zotter’s equation is one special case of self-consistent quadratic equation. But it is only a good approximation for
electron storage rings where the inductance is the dominant impedance.



Principles derived from Hassinski equation

* Bunch lengthening for some impedance models with Gaussian bunch approximation

- Bunch shortening for positive momentum compaction: Pure capacitance, Free-space steady-state CSR and CWR

TABLE 1. Effective impedances for a GGaussian bunch with specific impedance forms.

L_[1 — isgnl[k]] ,/ £l£0

27b 20,
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L: chamber length; b: chamber radius; o.: Conductivity.

Free-space steady-state CSR
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p: Bending radius; total length of dipoles is 27p.

Free-space steady-state CWR
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L: wiggler length; 6o: wiggler deflection angle; k.: fundamental frequency

of wiggler radiation; ¥ = -2 +~vg + In4 ~ —0.0365.




Principles derived from Hassinski equation

* |nverse problem of Haissinski equation
- Wake potential extracted from simulated or measured bunch profile
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- Impedance extracted from wake potential [1]
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[1] A. Chao, Lectures on Accelerator Physics (World Scientific, 2020)



Some practical examples

* Bunch shortening by free-space CSR/CWR

- Significant bunch shortening/lengthening for positive/negative momentum compaction in simulations for EIC ring
electron cooler [1]

- Practically, chamber shielding suppresses low-frequency CSR/CWR, such effects have not be observed in

measurements
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[1] A. Blednykh et al., PRAB 26, 051002 (2023).



Some practical examples

 Using BPM to measure beam phase

- It’s not trivial to detect the center of mass using BPM signals

- Detecting the peak position of the bunch profile using BPM signals (zero-cross point) was developed at SuperKEKB
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Fig. 10. Bunch signal ol the electron beam picked-up by a button electrode. Upper trace corresponds W a part of a bunch train with a spacing of 2 ns, the bunch current is
0.5 mA. Lower trace corresponds to a gated bunch signal. The horizontal scale is 10 ns in full range or 1 ns/div. and the vertical scale is 300 mV/div. for the upper trace and
200 mV/div. for the lower one.

BPM signal measured at KEKB in 2008 [1]

[1] T. leiri et al., NIMA 606 (2009) 248-256.
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Some practical examples

 Using BPM to measure beam phase
- It’s not trivial to detect the center of mass using BPM signals

- Detecting the peak position of the bunch profile using BPM signals (zero-cross point) was developed at SuperKEKB
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Simulated bunch profiles have tilt and shift in center-of-mass.
BPM signal: i(t) = —dQ(t)/dt
-> Zero-cross point of BPM signal is more relevant to peak of bunch profile

Indeed the transport line of BPM system filters the signal from buttons. It such filtering is well understood, details of
bunch profile could be extracted (Discussion with B. Pedobedov)

— A challenge to monitor experts
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Some practical examples

 SuperKEKB LER

- Pseudo-Green function wakes constructed and used inputs of simulations
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Fourier transform of short-bunch wakes



Some practical examples

 SuperKEKB LER

- Pseudo-Green function wakes constructed and used inputs of simulations
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Some practical examples

SuperKEKB LER

- Pseudo-Green function wakes constructed and used inputs of simulations
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Summary

* Simple scaling laws are derived from Haissinski equation, useful for correlating impedance
computations with beam-based measurements

* |t is possible to extract impedance information from BPM-based measurements

* |n addition to bunch lengthening, streak camera measurements can provide details of ring
Impedances
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