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Connecting Hassinski equation and Zotter’s equation

• Haissinski equation [1]

- Stationary solution of Vlasov-Fokker-Planck equation.

- Bottom-up predictions of potential-well lengthening.


• Zotter’s equation [2]

- Extraction of effective inductance from bunch length measurements.
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Principles derived from Hassinski equation

• Some principles can be trivially derived from Haissinski equation

- Starting from the differential equation instead


- Center of mass: Sensitive to real part of impedance
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Principles derived from Hassinski equation

• Some principles can be trivially derived from Haissinski equation

- Peak position of bunch profile: Sensitive to real part of impedance


- rms bunch length: Sensitive to imaginary part of impedance
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Principles derived from Hassinski equation

• Some principles can be trivially derived from Haissinski equation

- Zotter’s equation can be easily obtained with conditions of pure inductance  and Gaussian bunch 

profile. Exactly, the numerical coefficient should be .


- Zotter’s equation is one special case of self-consistent quadratic equation. But it is only a good approximation for 
electron storage rings where the inductance is the dominant impedance.
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Principles derived from Hassinski equation

• Bunch lengthening for some impedance models with Gaussian bunch approximation

- Bunch shortening for positive momentum compaction: Pure capacitance, Free-space steady-state CSR and CWR
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Principles derived from Hassinski equation

• Inverse problem of Haissinski equation

- Wake potential extracted from simulated or measured bunch profile


- Impedance extracted from wake potential [1]
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Some practical examples

• Bunch shortening by free-space CSR/CWR

- Significant bunch shortening/lengthening for positive/negative momentum compaction in simulations for EIC ring 

electron cooler [1]

- Practically, chamber shielding suppresses low-frequency CSR/CWR, such effects have not be observed in 

measurements
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Positive αc Negative αc



Some practical examples

• Using BPM to measure beam phase

- It’s not trivial to detect the center of mass using BPM signals

- Detecting the peak position of the bunch profile using BPM signals (zero-cross point) was developed at SuperKEKB
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BPM signal measured at KEKB in 2008 [1]

Simulated center of mass did not 
fit the measured data well

Simulated peak position did fit 
the measured data well, 
especially at low bunch currents
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Indeed the transport line of BPM system filters the signal from buttons. It such filtering is well understood, details of 
bunch profile could be extracted (Discussion with B. Pedobedov)


 A challenge to monitor experts→



Some practical examples

• SuperKEKB LER

- Pseudo-Green function wakes constructed and used inputs of simulations
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Pseudo-Green function wakes with 0.5 
mm Gaussian bunch Fourier transform of short-bunch wakes Haissinski solutions



Some practical examples

• SuperKEKB LER

- Pseudo-Green function wakes constructed and used inputs of simulations
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The slopes at zero current have clear 
meanings with given impedance and 
nominal bunch

Effective impedance shows machine 
properties



Some practical examples

• SuperKEKB LER

- Pseudo-Green function wakes constructed and used inputs of simulations
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Wake potential with different bunch 
profiles

Real part of impedance extracted from 
Haissinski solutions

Imaginary part of impedance extracted 
from Haissinski solutions



Summary

• Simple scaling laws are derived from Haissinski equation, useful for correlating impedance 
computations with beam-based measurements


• It is possible to extract impedance information from BPM-based measurements

• In addition to bunch lengthening, streak camera measurements can provide details of ring 

impedances
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