Impedance model for SuperKEKB LER

Demin Zhou and Takuya Ishibashi

Accelerator laboratory, KEK

Acknowledgements

W. Bruns, M. Migliorati, and SuperKEKB team

SuperKEKB TMCI workgroup meeting, Nov. 09, 2021, KEK

Introduction

- The longitudinal pseudo-Green's function impedance model was constructed in the design stage of SuperKEKB (see my talk at the first TMCI group meeting [1])
- To understand the TMCI problem at SuperKEKB LER, wake calculations were done in 2021 with emphasis on the transverse wakes (separation of dipolar and quadrupolar parts).
 - GdfidL version: 200723.
 - Driving Gaussian bunch σ_{z} =0.5 mm.
 - Mesh sizes: dx=dy=0.2 mm, dz=0.1 mm (limited by available computing resources).
 - Use standard "-fdtd" method.
- The impedance model for both longitudinal and transverse planes was then constructed.
- The numerical errors in GdfidL calculations with the above conditions were well understood (thanks to A. Blednykh, W. Bruns, I. Zagorodnov et al.) (see my talk on benchmark at this meeting).
- More careful wake calculations are under preparation.

Introduction

• Some components

ARES RF cavity

IR duct

Long. FB kicker

Introduction

Some components

- Use data of design stage.
- Assume collimator settings on Jun. 30, 2021.
- The table is for $\sigma_z = 5$ mm.
- Ref.[2] for details.

	/
Com	
MC	
Pumpi	
e i	
31	
Тиороца	
Iransve	
Transve	
	l
	ſ
Longitud	
Grooved	The second se
Longitud Grooved T	
Longitud Grooved T Clearing	
Longitud Grooved T Clearing	
Longitud Grooved T Clearing Col	
Longitud Grooved T Clearing Col Resi	
Longitud Grooved T Clearing Col Resi	
Longitud Grooved T Clearing Col Resi	

	Number of items	Total loss factor (V/pC)	Total Resistance (Ohm)	Total inductanc (nH)
ARES	22	8.9	524	0
b bellows	1047	2.7	159	5.1
) flange	2000	0.2	13.7	4.1
ng port (m)	2200/0.4	0	0	0
Rmask	1000	0	0	0
R duct	1	0.04	0	0.5
BPM	445	0.1	8.2	0.6
rse FB kicker	2	0.4	26	0
erse FB BPM	12	0.02	1.0	0.02
inal FB kicker	2	1.8	105	0
beam pipe (m)	520/0.4	0.1	5.7	0.9
apers	25	0.01	0.7	0.1
electrode (m)	150/0.8	0.04	2.2	2.3
limators	-	1.4	82	18.2
stive wall	-	3.9	230	5.7
Total	-	19.6	1157	37.6

- Use data of 2021.
- Assume collimator settings on Jun. 30, 2021.
- The table is for σ_z =5 mm.

Com
MC
Pumni
i unpi
SF
l
Transver
Transve
Longitud
Grooved
-
Cleaning
Clearing
Col
Resi
-

	Number of items	Total loss factor (V/pC)	Total Resistance (Ohm)	Total inductanc (nH)
ARES	22	10.2	601	0
b bellows	1047	1.4	83	4.7
) flange	2000	0.01	0.5	1.1
ng port (m)	2200/0.4	0	0	0
Rmask	1000	0	0	0
R duct	1	0.002	0.1	0.6
BPM	445	0.1	8.5	0.6
rse FB kicker	2	0.4	26	0
erse FB BPM	12	0.02	1.0	0.03
inal FB kicker	2	1.8	105	0
beam pipe (m)	520/0.4	0.1	6.3	0.9
apers	25	0.01	0.4	0.06
electrode (m)	150/0.8	0.1	4	11
limators	-	0.7	44	13.4
stive wall	-	3.9	230	5.7
Total	_	18.8	1112	37.6

- Comparison of old and new model: Pseudo-Green's function wakes for σ_{z} =0.5 mm.
 - Top-5 sources: ARES, RW, Long. FB kickers, Comb bellows, Collimators.

- Comparison of old and new model: Long-bunch wakes for σ_z =5 mm.
 - Top-5 sources: ARES, RW, Long. FB kickers, Comb bellows, Collimators.

- Comparison of old and new model: Pseudo-Green's function wakes for σ_z =5 mm.
 - New model for bellows is better: Cavity structure shielded by RF fingers.
 - Old model for RF cavity is better: Realistic structure modeled.

Old model

Green's function wakes for σ_z =5 mm. ructure shielded by RF fingers. structure modeled.

Comb bellows

<image>

- Use beam parameters of Jun. 30, 2021 ($\beta_v^* = 1 \text{ mm}$).
- Compare old and new longitudinal impedance model.
- New model gives lower MWI threshold (to be understood)
 - Possible sources: More resistive wakes of ARES cavities, high-frequency noise in impedance model.

	Values
RF voltage (MV)	9.12
Beam energy (GeV)	4
Natural bunch length (mm)	4.6
Momentum compaction factor (E-4)	2.9690
Longitudinal damping time (ms)	22.84954
Energy spread (E-4)	7.52596
Energy loss per turn (MeV)	1.7621609
Synchrotron tune	0.0232639

10

- Use beam parameters of Jun. 30, 2021.
- Using old impedance model with inclusion of CSR and CWR.
- CSR remarkably reduces MWI threshold. This was known [2].

⁻ CSR and CWR. s was known [2].

11

- Use beam parameters of Jun. 30, 2021.
- Using new impedance model with inclusion of CSR and CWR.
- The results with GW+RW are very consistent with M. Migliorati's using PyHEADTAIL (See Mauro's talk at this meeting).
 - Linear fitting of Vlasov results gives σ_{z} (mm) = 4.66 + 0.64 I_{b} (mA).
 - MWI threshold also similar.

- Use beam parameters of Oct. 26, 2021 (during TMCI machine study with $\beta_v^* = 8$ mm).
- See T. Ishibashi's talk at this meeting about TMCI study.

	Values
RF voltage (MV)	9.12
Beam energy (GeV)	4
Natural bunch length (mm)	4.48
Momentum compaction factor (E-4)	2.8158
Longitudinal damping time (ms)	22.84953
Energy spread (E-4)	7.52536
Energy loss per turn (MeV)	1.7621609
Synchrotron tune	0.022656

- Use data of 2021.
- Assume collimator settings on Jun. 30, 2021.
- The table is for σ_z =5 mm.

	Number of items	Average β _y (m)	β _y *κ _{yD} (V/pC)	β _y *κ _{yQ} (V/pC)
ARES	22	17.7	-420	0
b bellows	1047	19.1	-867	182
) flange	2000	19.1	-103	-3
ng port (m)	2200/0.4	19.1	0	0
R mask	1000	19.1	0	0
R duct	1	20.8	-661	170
BPM	445	28.0	-89	5
rse FB kicker	2	7.8	-40	0
erse FB BPM	12	19.4	-9	0
inal FB kicker	2	20.2	-155	0
beam pipe (m)	520/0.4	19.0	-196	-187
apers	25	19.1	0	10
electrode (m)	150/0.8	15.7	-1464	-1240
stive wall	_	19.1	-1111	-
Total	-	-	-5116	-1062

- Use data of 2021.
- Assume collimator settings on Jun. 30, 2021.
- The table is for σ_z =5 mm.

	1 all
	The Party
	-
	L
	252
	100
	1988
	100
	L
A STATE OF A	No.
	L
	130
	1
and the second second	
	-

	Half gap (mm)	Average β _y (m)	β _y *κ _{yD} (V/pC)	β _y *κ _{yQ} (V/pC)
06H1	9	5.6	-82	76
06H3	8.69	5.6	-85	86
06V1	2.86	67.3	-13696	-6190
06V2	2.27	20.6	-6137	-2658
03H1	12	3.0	-44	10
03V1	8	17.0	-608	-398
02H1	7.98	24.7	-404	493
02H2	10	13.2	-191	125
02V1	1.225	13.9	-11025	-3523
02H3	13	55.4	-817	55
002H4	8.03	13.3	-217	262
Total	-	-	-33305	-11662

- Plots of Pseudo-Green's function wakes for σ_{z} =0.5 mm.
- Assume collimator settings on Jun. 30, 2021.

16

- Long-bunch wakes for $\sigma_z = 5$ mm.
- Assume collimator settings on Jun. 30, 2021.

17

- Use data of 2021.
- Assume collimator settings on Jun. 30, 2021.
- The table is for σ_z =5 mm.

	1.20
Con	n
Ν	C
Pump	
S	F
Transv	el
Transve Transv	e1 7e
Transve Transve Longitu	е /е d
Transve Transve Longitue	eı ve d
Transve Transve Longitue Grooved	eı ve d
Transve Transve Longitue Grooved	e ve d d T
Transv Transv Longitu Grooved	e ve d d T
Transve Transve Longitue Grooved Clearin	e d d T g
Transve Transve Longitue Grooved Clearine Res	e d d T g
Transve Transve Longitue Grooved Clearine Res	

	Number of items	Average β _x (m)	β _x *κ _{xD} (V/pC)	β _x *κ _{xQ} (V/pC)
ARES	22	17.2	-408	0
b bellows	1047	15.8	-442	-77
) flange	2000	15.8	-82	2
ng port (m)	2200/0.4	15.8	-2	0
R mask	1000	15.8	0	0
R duct	1	0.34	-14	-4
BPM	445	18.9	-64	-4
rse FB kicker	2	18.9	-31	-69
erse FB BPM	12	23.9	-12	0
inal FB kicker	2	35.5	-273	0
beam pipe (m)	520/0.4	11	-547	42
apers	25	15.8	-9	-9
electrode (m)	150/0.8	15.6	-174	1285
stive wall	-	15.8	-924	-
Total	-	-	-2982	1167

- Use data of 2021.
- Assume collimator settings on Jun. 30, 2021.
- The table is for σ_z =5 mm.

	100
	100
	Ľ
	188
	137
	Ľ
	(all a
	Ľ
	137
	1000
	(all a
A CONTRACTOR OF THE OWNER	

	Half gap (mm)	Average β _x (m)	β _x *κ _{xD} (V/pC)	β _x *κ _{xQ} (V/pC)
06H1	9	24.2	-786	-335
06H3	8.69	24.2	-882	-382
06V1	2.86	14.6	-1201	1249
06V2	2.27	10	-1134	1147
03H1	12	29	-485	-95
03V1	8	10.4	-157	241
02H1	7.98	20.8	-947	-421
02H2	10	36.5	-949	-353
02V1	1.225	10.9	-2734	2738
02H3	13	50.8	-703	-53
002H4	8.03	20.4	-916	-407
Total	-	_	-10893	3329

- Plots of Pseudo-Green's function wakes for σ_{z} =0.5 mm.
- Assume collimator settings on Jun. 30, 2021.

- Long-bunch wakes for $\sigma_z = 5$ mm.
- Assume collimator settings on Jun. 30, 2021.

Betatron tune shift

- Use data of 2021.
- Assume collimator settings on Jun. 30, 2021.
- Use beam parameters and lattice on Jun. 30,
- Unit: /mA

	Ver. Dipolar Collimators	Vert. Dipolar. Others	Vert. Quad Collimators	Hor. Quad. Others	Total
σ _z =5 mm	-0.00666651	-0.00102394	-0.0023343	-0.000212568	-0.0102373
σ _z =6 mm	-0.00606247	-0.000917733	-0.00195026	-0.000170975	-0.00910144

	Hor. Dipolar Collimators	Hor. Dipolar. Others	Hor. Quad Collimators	Hor. Quad. Others	Total
σ _z =5 mm	-0.00218038	-0.000596873	0.000666322	0.000233627	-0.0018773
σ _z =6 mm	-0.00184463	-0.000548731	0.000561459	0.00018929	-0.00164261

$$, 2021. \qquad dvdI[\beta \times] := \frac{\beta \times * 10^{12} * 10^{-3}}{4 \pi * (c0 / Cir) * (Ep * 10^{9})};$$

Summary

- Longitudinal impedance model \bullet
 - The new model gives similar loss factor, resistance and inductance as the old model.
 - But Vlasov simulations with the new model show lower MWI threshold. The reason is to be understood
- Vertical impedance model
 - Vertical collimators dominates the dipolar and quadrupolar wakes.
 - Numerical noises in small-gap collimators is a problem to be solved.
- Horizontal impedance model

