

Study of Crab-Waist Scheme

Y. Ohnishi

	LER	Unit
Emittance	3.2	nm
Horizontal Beta at IP	32	mm
Vertical Beta at IP	0.270	mm
Half crossing angle	41.5	mrad
Horizontal Beta at crab-waist sextupole	8.5	m
Vertical Beta at crab-waist sextupole	200	m
Horizontal phase advance between IP and crab-waist sextupole	25π	rad
Vertical phase advance between IP and crab-waist sextupole	26.5π	rad
Nominal K ₂ for crab-waist sextupole	13.66	1/m ²
	$H_{e} = c_{3}x^{*3} + c_{en}x^{*}p_{n}^{*2}$	

$$|K_2| = \frac{1}{\tan 2\phi_x \beta_{y,s} \beta_y^*} \sqrt{\frac{\beta_x^*}{\beta_{x,s}}}$$

$$H_{s} = c_{3}x^{*3} + c_{cw}x^{*}p_{y}^{*2}$$
$$|c_{3}| = 9854$$
$$|c_{cw}| = 6$$

Crab-waist Optics in LER

sler_1689_cw2d.sad

Crab-Waist sextupole: SXCWOP/SXCWNP (thin lens)

Touschek Lifetime

Transverse Aperture for Crab-Waist Scheme

Transverse Aperture for Crab-Waist Scheme

with Beam-Beam

7

Simple IR Optics

No X-Y coupling and No vertical dispersion in IR

sler_1689_cw3_5e.sad

sler_1689_cw3_5e.sad

Initial momentum deviation

$$\delta_0 = \Delta p / p_0 = 0$$

Simple IR optics w/o Beam-Beam

sler_1689_cw3_5e.sad

1000

 $\delta_0 = \Delta p / p_0 =$

turns

Simple IR optics with Beam-Beam

w/o nonlinear Maxwellian fringe for QC1/QC2

sler_1689_cw3_5e.sad

$$\delta_0 = \Delta p / p_0 = 0$$

Simple IR optics w/o Beam-Beam

11

w/o nonlinear Maxwellian fringe for QC1/QC2

sler_1689_cw3_5e.sad

$$\delta_0 = \Delta p / p_0 = 0$$

Simple IR optics with Beam-Beam

Optimization of Dynamic Aperture

- Realistic lattice for Crab-Waist scheme in LER
- Dynamic aperture reduces as increasing K₂ of the crab sextupoles.
- The problem is a nonlinear kick(K₂ xy term) due to the crab sextupoles can not be cancelled for larger horizontal amplitudes without Beam-Beam effects. Linearity between the crab sextupoles is broken by IR nonlinear elements, especially Maxwellian fringe field.
- Optimization of sextupoles and octupoles can not recover the linearity of transfer matrix between the crab sextupoles with K₂=11(nominal of 80 %), so far.

Dynamic Aperture for Simple IR Optics

Simple IR

sler_1689_cw3_5e.sad

Bad Polarity of Crab-waist sextupoles

Check Polarity of Crab-Waist Sextupoles

Simple IR optics with Beam-Beam

sler_1689_cw3_5b.sad

Initial momentum deviation

$$\delta_0 = \Delta p / p_0 = 0$$

SXCWNP: $K_2 > 0 [1/m^2]$ SXCWOP: $K_2 < 0 [1/m^2]$ SXCWNP: K₂ < 0 [1/m²] SXCWOP: K₂ > 0 [1/m²]

Transverse Dynamic Aperture

Tracking for Crab-Waist Optics

$x_0 = 5 \sigma_x$ $y_0 = 0$ $K_2 = 0 [1/m^2]$ $K_2 = 13.66 [1/m^2]$

Crab Waist Sextupole ON and OFF

0.003

0.002

0.001

-0.001

-0.002

-0.003

0.001

5E-4

-5E-4

-0.001

20

€

>

) X

Tracking for Simple IR Optics

y [m]

120

turns

40

60

80

100

23

8E-4

6E-4

100

120

Comparison for On-momentum Aperture

sler_1689_cw2d.sad sler_1689_cw3_5b.sad

No difference of aperture larger than $K_2 = 4 [1/m^2]$.

Comparison for On-momentum Aperture

sler_1689_cw3_5b.sad sler_1689_cw3_5b.sad

The K₂xy term restrict the transverse aperture.