Tolerance for Beam-beam and ecloud

K. Ohmi, D. Zhou (KEK)

ICFA Mini-Workshop on Commissioning of SuperKEKB and e+e- Colliders

11-13 Nov, 2013 KEK

Thanks to Y. Suetsugu and H. Fukuma

Tolerance of IR errors for Beam-beam interactions

- Weak-strong simulation is used for the parameter scan.
- Examples, x-offset and r1*.

Beam noise

• Turn by turn noise without correlation in turns.

Summary – tolerance for parameters with 20% luminosity degradation

Parameter	w/ crab waist	w/o crat) waist
r ₁ * (mrad)	±5.3	±3.5	
r ₂ * (mm)	±0.18	±0.13	
r ₃ * (m ⁻¹)	±44	±15	
r ₄ * (rad)	±1.4	±0.4	
∂r₁* /∂δ (rad)	±2.4	±2.1	
∂r₂*/∂δ (m)	±0.086	±0.074	
∂r₃*/∂δ (m⁻¹)	±1.0×10 ⁴	±8400	
∂r₄* /∂δ (rad)	±400	±290	
ղ _y * (µm)	±62	±31	
η _y ΄*	±0.73	±0.23	
Δx (µm) collision offset Δs (µm) waist error	10 100 set 0.02 (100)	10 100	The degradation is roughly quadratic
δx (µm) turn by turn noise δy (nm)	0.5 4	0.5 4	σx=6-10μm σy=60 nm

Threshold of the strong head-tail instability (Balance of growth and Landau damping)

- Stability condition for $\omega_e\sigma_z/c{>}1$

$$= \sqrt{\frac{\lambda_p r_e c^2}{\sigma_y (\sigma_x + \sigma_y)}}$$

$$U = \frac{\sqrt{3}r_e\beta_y}{\gamma\nu_s\omega_e\sigma_z/c}\frac{|Z_{\perp}(\omega_e)|}{Z_0} = \frac{\sqrt{3}r_e\beta_y}{\gamma\nu_s\omega_e\sigma_z/c}\frac{KQ}{4\pi}\frac{\lambda_e}{\lambda_p}\frac{L}{\sigma_y(\sigma_x+\sigma_y)}$$

• Since
$$\rho_e = \lambda_e / 2\pi \sigma_x \sigma_y$$
,

$$\rho_{e,th} = \frac{2\gamma v_s \omega_e \sigma_z / c}{\sqrt{3} K Q r_e \beta_y L}$$

Origin of Landau damping is momentum compaction

 ω_{ρ}

$$v_s \sigma_z = \alpha \sigma_\delta L$$

- Q=min(Q_{nl}, $\omega_e \sigma_z/c$)
- Q_{nl}=10 in this presentation, depending on the nonlinear interaction.
- K characterizes cloud size effect and pinching.
- $\omega_e \sigma_z / c^2 12-20$ for SuperKEKB.
- We use $K=\omega_e\sigma_z/c$ and $Q_{nl}=7$ for analytical estimation.

Parameters

Lattice		KEKB	Cesr-TA	PETRA-III	SuperKEKB	Super B
Circumference	<i>L</i> (m)	3,016	768	2304	3016	1260
Energy	$E ~({\rm GeV})$	3.5	2-5	6	4.0	6.7
Bunch population	$N_{+}(10^{10})$	8	2	0.5	9	5
Beam current	I_{+} (A)	1.7	-	0.1	3.6	1.9
Emittance	$\varepsilon_x(\text{nm})$	18	2.3	1	3.2	2
	$\varepsilon_y(\text{nm})$	0.18	0.023	0.01	0.01	0.005
Momentum compaction	$\alpha(10^{-4})$	3.4	68	12.2	3.5	
Bunch length	$\sigma_z(\text{mm})$	6	6.8	12	6	5
RMS energy spread	$\sigma_E / E(10^{-3})$	0.73	0.8		0.8	0.64
Synchrotron tune	ν_s	0.025	0.067	0.049	0.0256	0.0126
Damping time	$ au_x(\mathrm{ms})$	40	56.4	16	43	26

Table 1: Basic parameters of the positron rings

Table 2: Threshold of the B factories positron rings and others

		KEKB	KEKB	Cesr-TA	PETRA-III	SuperKEKB	SuperB
		(no sol.)	(50 G sol.)				
Bunch population	$N_{+}(10^{10})$	3	8	2		8	5
Beam current	I_+ (A)	0.5	1.7	-	0.1	3.6	1.9
Bunch spacing	$\ell_{sp}(ns)$	8	7	4-14	8	4	4
Electron frequency	$\omega_e/2\pi(\text{GHz})$	28	40	43	35	150	175
Phase angle	$\omega_e \sigma_z/c$	3.6	5.9	11.0	8.8	18.8	18.3
Threshold	$\rho_e \ (10^{12} \ { m m}^{-3})$	0.63	0.38	1.7	1.2	0.27	0.54

SuperKEKB simulation in 2010

Electron cloud instability in high beta lattice

- Realistic electron cloud distribution was given by Suetsugu et al.
- The wake effect to beam is stronger for large $\beta_{\rm v}$.
- IR beta is huge, β_y =2000-3000m. Beam size is large , electron frequency is slow.

$$\omega_e = \sqrt{\frac{\lambda_p r_e c^2}{\sigma_y (\sigma_x + \sigma_y)}}$$

- Unstable mode depends on $\omega_e \sigma_z/c$, and the spread reduces Q factor of the electron cloud wake.
- The estimation using $\oint \rho_e \beta_y ds$ is inaccurate.
- PEHTS simulation using s dependent grid Poisson solver have been performed.

Beta function and estimated cloud density

IR

whole ring

Two cases of cloud densities, model 3; green and model6; cyan curves. (Suetsugu)

Tune shift contribution

- Tune shift and $\rho_e \beta_y$ near IR (-70<s<70m) are dominant. Design $\frac{1}{L} \oint \rho_e \beta_y ds = 10 14 \times 10^{11} m^{-1}$

Betatron tune and electron frequency variations

- High beta section separate the betatron phase difference π . Nonlinear force with even parity is coherently accumulated.
- $\omega_e \sigma_z/c$ is very high near IP. The area is narrow and low beta, neglect.

Vertical emittance growth caused by the electron cloud fast head-tail instability

Radiation damping and excitation

• Equilibrium emittance is $1.5x\varepsilon_{\text{design}}$ for $\rho_e=3x$ design, $1.2\varepsilon_{\text{design}}$ for $\rho_e=2x$. $\frac{1}{L}\oint \rho_e\beta_y ds = 42 - 28 \times 10^{11} m^{-1}$

- Radiation damping somewhat suppress the coherent instability at ρ_{e} =4-5x design (black to magenta).

Which cloud is dominant, in IR or Arc.

- Electrons near IR is dominant.
- It means that the incoherent emittance growth is evaluated correctly.

Bunch/electron motion in the instability

Instability due to electrons only in ARC.

Fast cloud motion (blue) and higher mode instability (red)

Summary

- IP optics tolerance for beam-beam interaction is presented.
- Simple estimation for electron cloud fast head-tail instability is presented.
- Detailed electron distribution along the ring is taken into account.
- Electrons in high beta section is dominant.
- The threshold is $\frac{1}{L} \oint \rho_e \beta_y ds = 60 \times 10^{11} m^{-1}$ Incoherent emittance growth is visible around $\frac{1}{L} \oint \rho_e \beta_y ds = 20 \times 10^{11} m^{-1}$

• Design
$$\frac{1}{L} \oint \rho_e \beta_y ds = 10 - 14 \times 10^{11} \, m^{-1}$$

Ion instability

- Turn-by-turn noise due to ion instability.
- Coupled bunch instability with very high growth rate.
- Feedback system suppresses the instability.
- Residual dipole motion as a turn by turn noise may degrade the beam-beam performance.

- Bunch train length of Nb=2500 with spacing=4ns.

Ion frequency and growth contribution

