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Optics parameters such as betatron tunes, beta functions, and dispersions depend on momentum

deviation. Such dependence is characterized by general chromaticity. General chromaticity can induce

emittance growth and luminosity degradation in colliders. To investigate the influence of general

chromaticity on beam dynamics, a symplectic map for chromaticity was implemented in the beam-

beam codes and used in simulations at KEKB. A systematic investigation revealed that chromatic X-Y

couplings can deteriorate the machine luminosity in the order of 10% with head-on colliding beams. The

results of this study triggered the installation of skew sextupoles to KEKB rings for the purpose of

correcting the chromatic X-Y couplings. Beam commissioning with skew-sextupole tuning knobs at

KEKB has proved to be very successful; a new world’s record luminosity of 2:1� 1034 cm�2 s�1 was

achieved with Belle taking data in June, 2009. In this paper, we discuss the approach of general

chromaticity and present the results of simulations at KEKB.
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I. INTRODUCTION

The commissioning of KEKB [1] with crab cavities
began in February 2007. Beam-beam simulations showed
that the crab crossing is expected to boost the luminosity
by a factor of 2 [2]. However, the luminosity is still lower
than that predicted at high beam currents. Some research
has investigated several candidates for sources of luminos-
ity degradation at KEKB [3–5]. As pointed out in Ref. [3],
lattice nonlinearities, including amplitude-dependent and
momentum-dependent nonlinearities, may be important
candidates.

The ultimate luminosity performance of a collider can
be affected by a crosstalk between beam-beam interaction
and lattice nonlinearities. For example, a relevant impact of
the cubic nonlinearities on the peak luminosity and beam
lifetime has been observed at the lepton colliders VEPP4M
[6] and DA�NE [7]. A detailed simulation of beam-beam
interaction and full treatment of lattice nonlinearities sug-
gested a significant loss of luminosity in CESR-c that
comes from momentum-dependent coupling errors in the
detector solenoid compensation scheme [8]. These studies
resulted in relevant interaction region modifications and
luminosity improvement in CESR-c [9]. Recently, the
influence of beta-function chromaticity at the IP has been
studied at the Tevatron [10]. It was shown that large
chromatic perturbations can lead to a decrease of the
dynamic aperture for off-momentum particles due to
head-on collisions and cause deterioration of the proton
lifetime.

Recently, Seimiya and Ohmi devised a symplectic for-
malism to treat the momentum-dependent nonlinearities in
a storage ring [11]. In their framework, they generalized
the concept of chromaticity (so-called general chromatic-
ity) as being characteristics of all optics parameters. That

is, optics parameters such as betatron tunes, beta functions,
and X-Y couplings are functions of momentum deviation.
Here we use ‘‘general chromaticity’’ to differentiate the
traditional concept of ‘‘chromaticity,’’ which usually has
the meaning of chromatic dependence of betatron tunes.
One can define general chromaticity as the coefficients of
optics parameters expanding in a series of momentum
deviation. General chromaticity was used to construct a
symplectic map as perturbations in both betatron and syn-
chrotron motions. This provided the possibility of simulat-
ing the beam-beam effect combined with momentum-
dependent nonlinearities in storage-ring colliders.
General chromaticity is an essential property of a ma-

chine and plays an important role in the beam dynamics,
affecting machine properties such as the dynamic aperture,
the beam lifetime, and the luminosity. The effect of normal
tune chromaticity on beam dynamics has been studied
extensively. There are some reports on treatments of the
chromaticity of other optics parameters [12]. However, our
study is an attempt to place general chromaticity in beam-
beam simulations in a general framework. Though we
consider the KEKB as an example, we attempt to describe
the theories and simulation techniques in a universal way.
General chromaticity can be measured by performing

beam experiments in a well-tuned storage ring or calcu-
lated by using models with or without machine errors in
beam optics codes such as SAD [13]. Though machine
errors can be important sources of additional general chro-
maticity, their contributions will not be emphasized here,
other than short discussions in the context of this study.
The rest of this paper is organized as follows. First, the

symplectic formalism for general chromaticity is briefly
reviewed in Sec. II. The implementation of the formalism
in the simulation codes is presented in Sec. III. In Sec. IV,
the first measurement of general chromaticity at the KEKB
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HER, with a comparison with SAD modeling is presented.
In Secs. V, VI, and VII, the beam-beam effect with general
chromaticity is discussed by using KEKB as an example. A
summary of the results is presented in Sec. VIII.

The reader must note that, in the context of this paper,
we are always referring to general chromaticity besides
some special cases such as tune chromaticity. Further, we
will abbreviate general chromaticity as chromaticity. The
investigation of chromaticity of dispersion functions was
beyond the scope of this study, though they have already
been included in the chromaticity formalism [11].

II. GENERALIZED CONCEPT OF
CHROMATICITY REVISITED

In the literature, chromaticity has mostly been consid-
ered to be a result of a betatron tune shift due to momentum
deviation. However, generally speaking, all optics parame-
ters vary with momentum deviation. The generalized con-
cept of chromaticity originates from such chromatic
characteristics of betatron motion. In this paper, we discuss
the chromaticities of Twiss parameters and X-Y couplings,
which are expressed as a power series with respect to
relative momentum deviation � ¼ ðp� p0Þ=p0 as fol-
lows:

�uð�Þ ¼
X1

i¼0

�ui�
i �uð�Þ ¼

X1

i¼0

�ui�
i

�uð�Þ ¼
X1

i¼0

�ui�
i rjð�Þ ¼

X1

i¼0

rji�
i

u ¼ x; y and j ¼ 1; 2; 3; 4;

(1)

where the zero-order terms �u0, �u0, �u0, and rj0 are the

on-momentum alpha function, beta function, betatron
tunes, and linear X-Y couplings, respectively. First- and
higher-order coefficients of the series in Eq. (1) are defined
as general chromaticity.
According to the matrix formalism, the one-turn map for

betatron motion in a ring including X-Y couplings is

M4ð�Þ ¼ Rð�Þ �Mlinð�Þ � R�1ð�Þ; (2)

whereMlin is a 4� 4 block diagonalized matrix describing
uncoupled betatron motion [14] and R is the coupling
matrix. Mlin and R are defined as

Mlinð�Þ ¼ Mx 0
0 My

� �
(3)

Rð�Þ ¼ r0I2 �S2R
T
2 ð�ÞS2

�R2ð�Þ r0I2

� �
; (4)

where

Mu ¼ cos�uð�Þ þ �uð�Þ sin�uð�Þ �uð�Þ sin�uð�Þ
��uð�Þ sin�uð�Þ cos�uð�Þ � �uð�Þ sin�uð�Þ

� �
u ¼ x; y (5)

R2ð�Þ ¼ r1ð�Þ r2ð�Þ
r3ð�Þ r4ð�Þ

� �
(6)

I2 ¼ 1 0
0 1

� �
S2 ¼ 0 1

�1 0

� �
: (7)

Here,�uð�Þ ¼ 2��uð�Þ is the momentum-dependent one-turn phase advance. Suppose that the chromaticity is related to a
Hamiltonian

HIðx; px; y; py; �Þ ¼
X1

n¼1

ðanx2 þ bnxpx þ cnp
2
x þ enxpy þ fnpxyþ gnpxpy þ uny

2 þ vnypy þ wnp
2
yÞ�n; (8)

where the coefficients an to wn represent the chromatic
effects and are related to the chromaticity coefficients in
Eq. (1). The chromatic Hamiltonian in Eq. (8) results in a
perturbative transformation of MHð�Þ for betatron motion.
If the matrices obtained from the matrix formalism and by
the Hamiltonian perturbative approach are equalized, a
series of equations can be used to determine the coeffi-
cients in Eq. (8):

M4ð�Þ ¼ M4ð0Þ �MHð�Þ: (9)

After calculating the coefficients in Eq. (8) [11], we can
use this Hamiltonian to construct a symplectic map for

both betatron and synchrotron motions. Detailed formulas
for this symplectic map are given in Sec. III C.

III. MODEL FOR PARTICLE TRACKING

A. One-turn linear transformation

To study the beam-beam effect with chromaticity, we
select the observation location at interaction point (IP). The
particle coordinates in six-dimensional (6D) phase space
are defined as

X ¼ ðx; px; y; py; z; �ÞT: (10)
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The one-turn linear transfer matrix at the IP is set as

M0 ¼
Mx 0 0
0 My 0
0 0 Mz

0
@

1
A; (11)

where

Mu ¼ cos�u0 �u0 sin�u0

� sin�u0=�u0 cos�u0

� �
u ¼ x; y (12)

Mz ¼ cos�z0 ��z0 sin�z0

sin�z0=�z0 cos�z0

� �
(13)

and

�u0 ¼ 2��u0 u ¼ x; y; z (14)

�z0 ¼ cj�j
�z!0

; (15)

where c is the speed of light, � is the phase slip factor, and
!0 is the angular revolution frequency. Here, we assume
that the alpha function and dispersion function at the IP are
equal to zero. Linear X-Y couplings are also set to zero,
because in practical beam operation continuous linear
optics corrections are usually carried out and these parame-
ters mentioned above are tuned to be sufficiently small to
achieve good matching. Meanwhile, the effect of linear
couplings on luminosity is quite clear and should be re-
moved from the simulations since we want to focus on the
effect of the chromaticity on luminosity.

B. Map of beam-beam interaction

Both weak-strong and strong-strong beam-beam codes
are available at KEK. The map of beam-beam interaction
in these codes is also symplectic. The longitudinal varia-
bles, z and �, are treated as dynamical variables; that is,
they are not simple functions of s, such as sin�zs=L. The
transverse beam-beam force is evaluated by solving a 2D
Poisson equation or by using the Basseti-Erskine formula
for a 2D Gaussian distribution, since beam particles are
ultrarelativistic. The transverse beam-beam force depends
on z because of the beta variation near the IP. This implies
that the beam-beam interaction contains a longitudinal
force; otherwise, the symplectic condition in 6D phase
space would not be guaranteed. For detailed discussions
on the derivation of the maps, refer to Refs. [2,15,16].

It is noteworthy that in both weak-strong and strong-
strong beam-beam codes, the crossing angle at the IP can
be set to 11 mm rad or zero, corresponding to the cases of
the crab cavities being off or on. Again, this makes it
convenient to examine the effect of chromaticity in the
cases of collisions when the crab cavities are on and off.

C. Map of general chromaticity

Since the beam-beam interaction is symplectic in 6D
phase space, the chromaticity should be treated in the same
manner; i.e., the longitudinal variables should be treated as
dynamical variables. It is insufficient merely to use the 4�
4 matrix formalism in which the Twiss parameters are
expanded for �. The chromaticity should be expressed by
a symplectic map in 6D phase space. The chromatic
Hamiltonian in Eq. (8) satisfies the need for constructing
such a map.
For simplicity, series truncated to the third order of

Eqs. (1) and (8) were used in constructing the map for
chromaticity. This is reasonable because the contribution
of higher-order chromaticity is usually small. Another
reason for this is the fact that higher-order chromaticity
could not be measured easily or calculated accurately
through particle tracking as is demonstrated in Sec. IV. In
practical simulations, the convergence properties of such a
truncation were also verified. Using the Hamiltonian in
Eq. (8) up to third order, the explicit transformation of
chromatic perturbation for both betatron and synchrotron
motions is expressed [11] as

�p x¼
ð1þVÞðpx�Ax�DyÞ�Eðpy�Uy�DxÞ

ð1þBÞð1þVÞ�EF
(16)

�p y ¼
py �Ux�Dy� F �px

1þ V
(17)

�x ¼ ð1þ BÞxþ C �px þ FyþG �py (18)

�y ¼ ð1þ VÞyþW �py þ EyþG �px (19)

�� ¼ � (20)

�z ¼ zþ A0ð�Þx2 þ B0ð�Þx �px þ C0ð�Þ �p2
x þD0ð�Þxy

þ E0ð�Þx �py þ F0ð�Þ �pxyþG0ð�Þ �px �py þU0ð�Þy2
þ V 0ð�Þy �py þW 0ð�Þ �p2

y; (21)

where

Að�Þ ¼ X3

i¼1

an�
n Bð�Þ ¼ X3

i¼1

bn�
n

Cð�Þ ¼ X3

i¼1

cn�
n Dð�Þ ¼ X3

i¼1

dn�
n

Eð�Þ ¼ X3

i¼1

en�
n Fð�Þ ¼ X3

i¼1

fn�
n

Gð�Þ ¼ X3

i¼1

gn�
n Uð�Þ ¼ X3

i¼1

un�
n

Vð�Þ ¼ X3

i¼1

vn�
n Wð�Þ ¼ X3

i¼1

wn�
n

(22)
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and the variables with prime symbols in Eq. (21) denote
differentiation with respect to �. It is noteworthy that the
Hamiltonian expressed in Eq. (8) always exists for any
given chromaticity as in Eq. (1). Further, the map repre-
sented by Eqs. (16)–(21) is always symplectic. This makes
it convenient to verify different kinds of chromaticities and
determine how adversely they will affect the beam emit-
tance and luminosity. This is explained in greater detail in
Sec. VI.

The map for chromaticity can be constructed by another
direct method, in which expansion of the series of the
Hamiltonian, as expressed in Eq. (8), is not required [11].
A direct map obtained by this method was also imple-
mented in simulation codes. If the optics is not highly
distorted by large chromaticities of alpha and beta func-
tions, no major difference is found between these two
methods, as was expected from the impact on beam
dynamics.

D. Map of radiation damping and quantum excitation

Radiation damping and quantum excitation are added
using transformation on the normal mode Xi of the one-
turn transfer matrix M0 [16] as

Xi ¼
Dx 0 0
0 Dy 0
0 0 Dz

0
@

1
AXi þ

	x 0 0
0 	y 0
0 0 	z

0
@

1
AF̂i; (23)

where

Du ¼ ð1� duÞI2 	u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
udu

p
I2 u ¼ x; y; z;

(24)

du ¼ 1=�u is the damping rate in one revolution, and �u is
the damping time in the unit of turns, as shown in Table V.

F̂i is a vector of Gaussian random numbers with unit
variance.

Finally, the one-turn map of the beam-beam interaction
with chromaticity is constructed as

M ¼ Mrad �Mchr �Mbb �M0; (25)

where Mbb, Mchr, and Mrad are maps for the beam-beam
interaction, chromatic perturbation, and radiation damping
and quantum excitation, respectively. Equation (25) also
shows that in simulations, we can simply enable or disable
the transformation for chromaticity and compare the lumi-
nosity performances. This is explained in greater detail in
Sec. V. At the same time, we can also study synchrobeta-
tron resonances in the presence of chromaticity by using
the same code but disabling the beam-beam map.

IV. FIRST MEASUREMENT OF GENERAL
CHROMATICITYAT KEKB

At KEKB, intensive study on the effects of general
chromaticity has been motivated by dedicated beam mea-
surements. The experimental data, together with data from
SAD modeling, were used in consequent simulations. The

first systematic measurement of general chromaticity at the
IP of KEKB HER was performed on October 27, 2008. We
introduce the measurement results in this section.
Beta function with momentum deviation can be mea-

sured by changing the rf frequency of the accelerating
cavities [17]. Then, the chromaticity of the beta function
is calculated by fitting the data to a polynomial. The same
method can be extended to measure the chromaticity of the
alpha function, betatron tunes, dispersion, and X-Y cou-
plings. The measurement results are shown in Figs. 1–3.
The momentum compaction of the KEKB HER was
3:38� 10�4, and the nominal rf frequency was
508.886 MHz. In each figure, the measurement results
are also compared with results of the SAD calculation
with ideal optics. The corresponding chromaticity was
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FIG. 1. (Color) Betatron tunes as a function of momentum deviation. The rf frequency shifts from �200 to 200 Hz with a 100 Hz
interval. The solid and dashed lines represent third-order polynomial fittings.
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calculated through polynomial fittings; the results are listed
in Tables I and II. The coefficients of the chromatic
Hamiltonian were also calculated, as shown in Table III.

Figure 1 shows the tune shift versus relative momentum
deviation. The calculated tune chromaticity indicates a
significant discrepancy between the ideal optics and the
measurement. In practice, the normal tune chromaticity
may be changed by tuning optimization to improve the
beam lifetime and luminosity during machine operation.
Another fact is that machine errors can also contribute to
additional tune chromaticity.

The measured chromaticity of the alpha and beta func-
tions is also quite different from that of ideal optics, as
shown in Tables I and II and Fig. 2. Specifically, the
measured second- and third-order chromaticities are
much larger than those of ideal optics. We found that
such large chromaticities will cause strong optics distortion
for off-momentum particles and, consequently, lead to
unstable beams in beam-beam simulations. It implies that
the measurement results were not convincingly reasonable.
This may be due to the difficulties in measurements. The

first difficulty was that the beta functions were hard to be
measured when the betatron tunes were close to half in-
teger. Second, the number of data for polynomial fittings
was not enough due to limited beam time for machine
study. Third, Twiss parameters with large momentum de-
viation, which corresponds to large rf frequency shift,
could not be measured due to poor beam lifetime.
The most interesting fact is that the X-Y couplings at the

IP also vary with momentum deviation, even in the case of
ideal optics, as shown in Fig. 3. More accurate measure-
ments of chromatic X-Y couplings were performed by
Ohnishi et al. [18]. As discussed in Ref. [18], the chromatic
X-Y couplings without machine errors, considered as
‘‘natural chromatic coupling,’’ may originate from the
special magnets and the final focus quadrupole magnet in
the IR region. In addition, both machine errors and con-
tinuous optics corrections for the purpose of luminosity
optimization can lead to nonzero chromatic X-Y couplings.
Actually, we used random error seedings to model the

machine errors using SAD. We found that the chromaticity
depends greatly on error seedings. Thus, statistics on dif-
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FIG. 2. (Color) Alpha and beta functions at the IP as a function of momentum deviation. The rf frequency shifts from�200 to 200 Hz
with a 100 Hz interval. The solid and dashed lines represent third-order polynomial fittings.
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ferent seeds may be more reasonable estimations of the
chromaticity. In practice, 1000 seeds were applied to an
ideal optics at the KEKB HER. For each seed, we calcu-
lated all optics parameters. As examples, the distributions
of r31 and r41 are shown in Fig. 4. The average values and

their variations for r1i to r4i at the IP are summarized in
Table IV.
In summary, the measured chromaticity usually dis-

agrees with the chromaticity in the optics models, as shown
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FIG. 3. (Color) X-Y coupling parameters at the IP as a function of momentum deviation. The rf frequency shifts from�300 to 200 Hz.
The solid and dashed lines represent third-order polynomial fittings.

TABLE II. Chromaticity obtained from first beam measure-
ment at KEKB HER.

Parameter i ¼ 1 i ¼ 2 i ¼ 3

�xi 1.09 �126 �1:69� 105

�yi 5.61 842 �3:37� 105

�xi 18.0 �4:4� 104 2:31� 107

�xi �99:8 5240 8:19� 107

�yi �104 �8:7� 104 1:13� 108

�yi 0.145 150 �3:83� 104

r1i 0.0495 �99:5 �3:94� 104

r2i 0.019 �182 �1:95� 104

r3i 45.7 7860 �1:09� 107

r4i �114 4440 �1:52� 107

TABLE I. Chromaticity of ideal optics at KEKB HER.

Parameter i ¼ 1 i ¼ 2 i ¼ 3

�xi 0.126 �64:6 �2:7� 104

�yi 1.29 898 1:22� 105

�xi �16:9 �2:43� 104 �1:22� 106

�xi �27:1 �2:06� 104 6:76� 105

�yi �9:01 �5207 1:03� 106

�yi 0.0682 60 9240

r1i �0:2 �0:894 1578

r2i 0.342 �6:41 �601
r3i 38.8 �3469 �6:34� 105

r4i �134 4156 2:3� 106
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in Tables I, II, and III. In KEKB rings, the chromaticity of
tunes, alpha and beta functions at the IP was controllable
and knobbed according to the luminosity performance.
However, the chromaticity of the X-Y couplings at the IP
had not been controlled until the recent installation of skew
sextupoles [18].

V. BEAM-BEAM SIMULATIONS WITH
CHROMATICITY

From this section, we apply the data from measurement
and SAD modeling to beam-beam simulations and study the
effects of general chromaticity as a whole at KEKB. The
main parameters used for beam-beam simulations at

KEKB are summarized in Table V. The tunes are similar
to the operation tunes during the autumn run in 2008. To
avoid the occurrence of the flip-flop effect, all parameters
except for beam energy and bunch population, are selected
to be equal for both rings.
Here we mainly present the simulation results using the

first three orders of chromaticity of the ideal optics. We
checked the second- and third-order chromaticities and
found that, for the ideal optics, the contribution of these
high-order chromaticities to luminosity is negligible.
However, for the measurement data, the strong distortion
due to large second- and third-order chromaticities of
vertical alpha and beta functions (see Fig. 2) leads to
unstable beams in tracking. Thus, high-order chromaticity
obtained from measured data cannot be used in simula-
tions. When the first-order chromaticity is taken into ac-
count, the ideal optics and measurement yield very similar
luminosity degradation in weak-strong simulations (see
Fig. 13). But a remarkable difference was observed in
strong-strong simulations, as shown in Fig. 5. This may
be explained by the presence of dynamic effects due to
beam-beam interaction; that is, large chromaticity of the
alpha and beta functions may worsen the dynamic effects
and thus cause a more severe loss of luminosity at higher
bunch currents.
For the weak-strong and strong-strong simulations, the

numbers of macroparticles for one bunch with an initial
Gaussian distribution were set to 1000 and 200 000, re-
spectively. The macroparticles were tracked in 20 000 turns

200 0 200 400
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80
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FIG. 4. (Color) Distributions of r31 and r41 with 1000 error seeds for KEKB HER.

TABLE III. First-order coefficients of chromatic Hamiltonian
calculated from chromaticity at KEKB HER.

Parameter Ideal optics Measurement

a1 2.10 10.2

b1 �1:31 0.47

c1 �0:984 �1:99
d1 �22:1 33.5

e1 0.176 0.178

f1 65.5 56.2

g1 �0:386 �0:533
u1 502 5359

v1 �8:78 �59:6
w1 0.0303 0.0229

TABLE IV. Average and variance of chromatic coupling parameters calculated from 1000
seeds of errors at KEKB HER.

Parameter i ¼ 1 i ¼ 2 i ¼ 3

r1i �0:21� 0:25 �2:2� 21 1600� 7300
r2i 0:34� 0:27 �3:9� 29 �39� 6000
r3i 37� 140 �3400� 6000 ð�0:64� 2:1Þ � 106

r4i �140� 130 5100� 11 000 ð2:6� 2:1Þ � 106
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to obtain equilibrium distributions. Beam envelope pa-
rameters of the colliding bunches were numerically calcu-
lated and then used to calculate luminosity [19]. Specific
luminosity as a function of bunch current product is shown
in Fig. 5. Weak-strong and strong-strong simulations were
performed for colliding beams with crab cavities turned on
and off. In the case of crab-off collision, the chromaticity
shows a relatively small effect on luminosity. However, in
the case of the crab cavities turned on, the figure clearly
shows that luminosity degradation occurs because of chro-
maticity. The weak-strong simulations show that an aver-
age of 5% degradation occurs, which does not depend on
bunch current up to 1.6 mA. On the other hand, the strong-
strong simulation shows that the degradation is larger and

slightly dependent on bunch current. In particular, a deg-
radation of around 10% occurs for a current product of
1:1 mA2.
It is also noteworthy that in the case of crab cavities

turned on, the slope of specific luminosity in strong-strong
simulations is much steeper than that in weak-strong simu-
lations. Specifically, there is a large discrepancy in the
luminosity at a low bunch current product of around
0:2 mA2. This is also a consequence of the dynamic beta
effect [20]. In the case of ultralow bunch currents as well,
both the weak-strong and the strong-strong simulations
yield the same luminosity.

VI. SCAN WITH FIRST-ORDER CHROMATICITY

To identify the effect of different terms of chromaticity
on luminosity and beam size, we fixed the tunes to �x ¼
44:5151 and �y ¼ 41:6059 and scanned each term on a

large scale in weak-strong simulations. Only the first-order
chromaticities of Twiss parameters and X-Y couplings
were scanned since they are usually dominant.
The statistical errors of calculated luminosity were re-

duced by averaging the values of luminosity and beam
sizes over the last 8000 turns. From Fig. 6, we can observe
that the luminosity degradation was quite small when we
applied the first-order chromaticities of alpha and beta
functions at the IP in simulations. Obvious luminosity
degradation was observed when the chromaticity was
large; however, this seems impossible in reality. This ob-
servation does not quite agree with the single knobs of
beam tuning at KEKB, as shown in Fig. 7. In practice, such
single knobs were designed to improve the beam lifetime.
However, it was found that luminosity is also sensitive to
the chromaticity of alpha and beta functions at IP. One
hypothesis is that the application of a single knob has side
effects correlated to synchrobeta resonances [21]. It should
be noted that these parameters have been scanned on a

TABLE V. Main parameters used for beam-beam simulations at KEKB. Apart from beam
energy and bunch population, all parameters are set to be equal for the HER and LER.

Parameter Description eþ e�

E (GeV) Beam energy 3.5 8.0

C (m) Circumference 3016.25 3016.25

N (1010) Bunch population 10.0 4.375

��
x (m) Horizontal beta function at the IP 0.9 0.9

��
y (mm) Vertical beta function at the IP 6.0 6.0


x (nm rad) Horizontal emittance 18.0 18.0


y (nm rad) Vertical emittance 0.18 0.18

�x Horizontal tune 44.5151 44.5151

�y Vertical tune 41.6059 41.6059

�z Synchrotron tune 0.024 0.024

�z (mm) Bunch length (Ib ¼ 0) 6.93 6.93

�� (10�4) Energy spread (Ib ¼ 0) 6.93 6.93

�x;y (turns) x, y damping time 4000 4000

�z (turns) z damping time 2000 2000
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much larger scale in simulations than in tuning knobs.
Further, in simulations, when these parameters have very
large values, the beam suddenly becomes unstable due to
severe optics distortion for off-momentum particles (see
Fig. 6).

Figure 8 shows the scan results of chromatic X-Y cou-
plings at the IP. Following the definitions in Ref. [21], we
adopted the following normalization for convenience of
comparison:

r�1N r�2N
r�3N r�4N

� �
¼ r�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��

x=�
�
y

q
r�2=

ffiffiffiffiffiffiffiffiffiffiffiffi
��

x�
�
y

q

r�3
ffiffiffiffiffiffiffiffiffiffiffiffi
��

x�
�
y

q
r�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��

y=�
�
x

q
0
B@

1
CA: (26)

As shown in Fig. 8, a comparison between scans of the
chromaticities of alpha and beta functions reveals that
there is a very clear correlation between luminosity degra-
dation and chromatic X-Y couplings. For example, with

some simple calculations using the chromaticity given in
Table I, a value of r41 ¼ �134, corresponding to
@r�4N=@� ¼ �11, causes a luminosity degradation of

around 4%. We remember that the weak-strong simulation
predicts 5% in total. This let us conclude that the luminos-
ity degradation shown in Fig. 5 is mainly associated with
r41 ¼ @r�4=@�. But we emphasize that it is not a general

conclusion. In fact, the contributions of chromatic X-Y
couplings to the perturbative Hamiltonian in Eq. (8) are
weighted by betatron tunes.
The momentum dependence of second-order betatron

tunes may be a concern because it may affect luminosity.
Therefore, we also scanned the second-order chromaticity
of horizontal tune. The vertical tune was fixed at 41.6059,
and the horizontal tune was varied from 44.505 to 44.52.
The results of scanning �x2 are shown in Fig. 9. Negative
�x2 drives particles with high momentum deviation close to
half-integer resonance, and positive �x2 drives particles
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away from half-integer resonance. This characteristic ex-
plains why we observe asymmetric effects of chromaticity
on beam size and luminosity in the figure. We also notice
that when the horizontal tune is moving close to half-
integer resonance, the luminosity degradation worsens
with nonzero �x2. The scan of second-order chromaticity
of the vertical tune does not show notable luminosity
degradation, because the vertical tune is much farther
from half integer than the horizontal tune.

VII. TUNE DEPENDENCE OF CHROMATIC
EFFECT

In Secs. V and VI, we fixed the nominal tunes in all
simulations. Apparently, the effect of chromaticity on lu-
minosity is tune dependent; therefore, in this section, we
present the results of tune scan on beam size and luminos-
ity by using weak-strong simulations. Again, we consider

the chromaticity of ideal optics, including first- to third-
order terms. The fractional tune region was set from 0.505
to 0.995 for both �x and �y. The tune step for the scan was

set to 0.005. For simplification of code development, we
fixed the coefficients of the chromatic Hamiltonian to those
calculated from the ideal optics with tune (44.5151,
41.6059). As follows from fixing the chromatic Hamil-
tonian, we do not guarantee that the chromaticity will be
frozen when we change tunes in simulations.
A comparison between the tune scans with and without

the map of chromaticity, shown in Figs. 10–12, leads to the
following conclusions: (1) The area of high-luminosity
regions with tunes near half-integer shrinks due to
chromaticity (see Fig. 10). (2) Luminosity degradation is
primarily associated with a blowup of the vertical beam
size and the degradation rate depends on tunes (see Figs. 11
and 12). (3) The width of the stop band at resonance

FIG. 7. (Color) Single knobs of chromaticities of alpha and beta functions at the IP of KEKB LER. In each subfigure, the red and blue
dots represent data acquired from the LER and HER, respectively. The solid red and blue lines represent polynomial fittings.
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�x � �y þ �z ¼ N, where N is an integer, is dramatically

enhanced by chromaticity and leads to the blowup of the
vertical beam size (see Figs. 10 and 12).
As a special case of �y ¼ 41:60, the tune scan with �x

from 44.51 to 44.71 was performed in weak-strong beam-
beam simulations with and without chromaticity (Fig. 13).
For convenience of comparison, we only used first-order
chromaticity in each simulation. Comparing with the re-
sults of only beam-beam effect, the luminosity degradation
and beam size blowup due to chromaticity obviously
change with tunes. The beam-beam effect dominates the
blowup of the horizontal beam size; and the chromaticity
can remarkably dilute vertical emittance and induce lumi-
nosity degradation. From Fig. 13, we also observed that
luminosity performances in the cases of first-order chro-
maticities of the ideal optics and measured optics, as shown
in Tables I and II, are very similar. This is because r41 is
dominant among the first-order chromaticities, and the
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FIG. 12. (Color) Vertical beam size scans in tune space. The colors are set to dark red in areas where the beam sizes are larger than
5 �m. The dashed line in each figure represents the synchrobeta resonance at �x � �y þ �z ¼ N (left: only beam-beam interaction;

right: beam-beam interaction plus chromaticity of ideal optics; the black areas indicate that beam is unstable because of strong
synchrobeta resonances).

FIG. 11. (Color) Horizontal beam size scans in tune space (left: only beam-beam interaction; right: beam-beam interaction plus
chromaticity of ideal optics; the black areas indicate that beam is unstable because of strong synchrobeta resonances).

FIG. 10. (Color) Luminosity scans in tune space with and without chromaticity. The dashed line in each figure represents the
synchrobeta resonance at �x � �y þ �z ¼ N (left: only beam-beam interaction; right: beam-beam interaction plus chromaticity of

ideal optics).
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values of r41 of the ideal optics and measured optics are
close to each other.

VIII. SUMMARYAND DISCUSSIONS

On the base of the chromaticity formalism, we carried
out various investigations of the effects of chromaticity
combined with beam-beam interaction on the luminosity.
From weak-strong simulations, the effect of first-order
chromaticity of alpha and beta functions and second-order
tune chromaticity is almost invisible at the KEKB. On the
contrary, results of strong-strong simulations show that
large chromaticity of alpha and beta functions may cause
remarkable loss of luminosity under the existence of dy-
namic effects due to beam-beam interaction. As an impor-
tant result, we found that the chromatic X-Y couplings are
not small enough and can affect the luminosity at the
present KEKB work point at around (44.515, 41.606).
When chromaticity of one ring in ideal optics is considered
in simulations, results of weak-strong simulations show
that the luminosity degradation is around 5%. Further
results of strong-strong simulations show that the luminos-
ity may decrease by around 10% and that the decrease
depends slightly on bunch currents. Since we only consid-
ered chromaticity in one ring and did not consider machine
errors, the 10% decrease should be considered as the
minimum luminosity degradation.

Luminosity degradation caused by chromaticity depends
greatly on betatron tunes. The chromaticity will enhance
both the strength and the width of the synchrobeta reso-
nance at �x � �y þ �z ¼ N because of the existence of

nonzero chromatic X-Y couplings. The present KEKB
rings operate with tunes close to half integer and near

resonance at �x � �y þ �z ¼ N. The results of the present

study provide an answer to the question of why chromatic
X-Y couplings can deteriorate the luminosity.
As compared to the successful knobs on chromaticities

of alpha and beta functions at the IP, knobs on chromatic
coupling are expected to be more powerful at KEKB. Since
skew sextupoles can be used to control the chromatic X-Y
couplings, in the end of 2008, it was decided that skew
sextupoles should be installed at both the HER and the
LER. Tuning with skew sextupoles was commenced from
May 2, 2009, at KEKB. Since then, beam operation at
KEKB has been very successful and the chromatic X-Y
couplings at the IP have been reduced dramatically [18].
The corresponding luminosity gain was above 15% [22],
and the peak luminosity exceeded 2� 1034 cm�2 s�1,
which is twice the designed value.
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