Collision Scheme in Upgrade and Super KEKB

K. Ohmi for superKEKB design group MAC2009 at KEKB 9-11 February, 2009

Introduction

- Limitation of the bunch length, Travel focus scheme
- present KEKB status
- Super Bunch scheme

Tentative Design Parameters K. OIDE						
		zero bunch current	design bunch current			
LER	sigz	5	6	mm		
	sige	7.1	8.0	10-4		
LER	sigz	4.5	5.3	mm		
neg. alpha	sige	7.1	8.5	10-4		
HER	sigz	3	3.6	mm		
	sige	6.8	7.0	10-4		
HER neg. alpha	sigz	3	3.1	mm		
	sige	6.8	7.7	10-4		

Luminosity optimization under the bunch length limit

- Using travel focus only in LER
- Different β , ε for two beams.
- Longer damping time of LER, 6000-8000(LER) and 4000 turns (HER).
- $\beta_x = 0.2 \text{m or } 0.4 \text{m}.$

Waist control-I traveling focus

$$M_{TF} = e^{H_I} M_{headon} e^{-H_I}$$

$$H_I = \frac{a}{2}p_y^2 z$$

$$\bar{y} = y + \frac{\partial H_I}{\partial p_y} = y + azp_y$$
 $\bar{\delta} = \delta - \frac{\partial H_I}{\partial z} = \delta - \frac{a}{2}p_y^2$

• Linear part for y. z is constant during collision.

$$\begin{pmatrix} \overline{\beta} & -\overline{\alpha} \\ -\overline{\alpha} & \overline{\gamma} \end{pmatrix} = T \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} T^{t} = \begin{pmatrix} \beta + \frac{a^{2}z^{2}}{\beta} & \frac{az}{\beta} \\ \frac{az}{\beta} & \frac{1}{\beta} \end{pmatrix} \qquad \alpha = 0$$
$$T = \begin{pmatrix} 1 & az \\ 0 & 1 \end{pmatrix} \qquad \bullet \text{ Minimum } \beta \text{ is shifted at s=-az}$$

How to configure the crab cavity and sextupoles

crab cavity

Head on collision

$$M_{headon} = e^{\theta p_x z} M_{crs} e^{-\theta p_x z}$$

• Head on + travel focus

$$M_{TF} = e^{-\frac{1}{2}p_{y}^{2}z} e^{\theta p_{x}z} M_{crs} e^{-\theta p_{x}z} e^{\frac{1}{2}p_{y}^{2}z}$$

• Actual Configuration $M_{TF} = e^{\frac{1}{2\theta}p_y^2 x} e^{\theta p_x z} e^{-\frac{1}{2\theta}p_y^2 x} M_{crs} e^{\frac{1}{2\theta}p_y^2 x} e^{-\theta p_x z} e^{-\frac{1}{2\theta}p_y^2 x}$ $= e^{\frac{1}{2\theta}p_y^2 x} e^{-\frac{1}{2\theta}p_y^2 (x+\theta z)} e^{\theta p_x z} M_{crs} e^{-\theta p_x z} e^{\frac{1}{2\theta}p_y^2 (x+\theta z)} e^{-\frac{1}{2\theta}p_y^2 x}$ $= e^{-\frac{1}{2}p_y^2 z} e^{p_x z} M_{crs} e^{-p_x z} e^{\frac{1}{2}p_y^2 z}$ See H. Koiso's slide

Crabbing beam in sextupole

- Crabbing beam in sextupole can give the nonlinear component at IP
- Traveling waist is realized at IP.

$$H_I = \frac{a}{2} p_y^2 z$$

• At the sextupole position

$$z^* = \sqrt{\frac{\beta_x(s)}{\beta_x^*}} \theta x(s)$$
$$K_2 = \frac{1}{2} \frac{B''L}{p/e} \approx \frac{1}{\theta} \frac{1}{\beta_y^* \beta_y} \sqrt{\frac{\beta_x^*}{\beta_x}} \qquad K_2^{\sim} 30-50$$

• The same strength as the crab waist sextupole

Travel waist in the weak-strong model

• Reduction of z degree of freedom

$$oldsymbol{x}(+0) = S \exp\left[-: \int_{-\Delta}^{\Delta} V_0^{-1}(s_i) H_{bb} V_0(s_i) ds_i :
ight] oldsymbol{x}(-0), \qquad s_i(z) = rac{z - z_i}{2}
onumber \ V_0(s) &\equiv V_0(s, 0) = S \exp\left[-: \int_0^s H_0 ds :
ight]
onumber \ = \prod_{i=\pm} \exp\left[-: rac{p_{x,i}^2 + p_{y,i}^2}{2} s :
ight],$$

- Travel focus $\mathbf{x}(+0) = e^{-H_{I}(z)}S \exp\left[-:\int_{-\Delta}^{\Delta}V_{0}^{-1}(s_{i}(z))H_{bb}V_{0}(s_{i}(z))ds_{i}:\right]e^{H_{I}(z)}\mathbf{x}(-0)$ $\approx S \exp\left[-:\int_{-\Delta}^{\Delta}V_{0}^{-1}(z_{i}/2)H_{bb}(\mathbf{x})V_{0}(z_{i}/2)ds_{i}:\right]\mathbf{x}(-0)$
- This transformation does not include z.
- This beam-beam system is two degree of freedom (x-y).

Parameters -positive α -

β _× (m)	0.2	0.4
β _y (mm)	6н/З∟	6н/ЗL
ε _× (nm)	12/20	12/20
τ/T_0	4000/8000	4000/8000
σ_z (mm)	3.5/6	3.5/6
L	5x10 ³⁵	3-4x10 ³⁵

SuperKEKB machine parameters

SuperKEKB using traveling focus (only for LER) and negative α

		LER	HER		
Emittanco	ε _x	24	18	nm	
Emittance	εγ	0.24	0.09	nm	
Data at ID	β _× *	20	20	cm	•
beta at IP	β _y *	3	6	mm	
Bunch length	σ_z	5	3	mm	8
Betatron tune	v_x/v_y	.505/.5905	.505/.5905		
Synchrotron tune	ν _s	0.025	0.025		a's'
Beam current	I ₊ /I_	9.4	4.1	А	ت ج ² 4
#bunches/harmonic#	N _b /h	5018,	/5120		(1×10
Crossing angle	2φ _x	$30 \rightarrow 0$ (crab crossing)		mrad	
D a a ma h a a ma *1	ξx	0.182	0.138		。
Dealli-Dealli -	ξy	0.295	0.513		0
	T _x	6000	4000	turns	
Damping	Ту	6000	4000	turns	
	Т _е	3000	2000	turns	
Luminosity	L	5.3x10 ³⁵		cm ⁻² s ⁻¹	
*1: ignore effects of traveling focus					

Present KEKB luminosity

- Life time issue is solved. Aperture limits the life time and also gave its asymmetry behavior.
- The luminosity drop is reduced, and the luminosity behaves to keep a constant beam-beam parameter for changing current.
- The beam-beam parameter is around $\xi = 0.09(\xi_N = 2r_e\beta L/\gamma Nf = 0.06).$

Specific Luminosity given by Y. Cai

- SAD : no error
- SAD xy : 1% coupling with Vertical offset errors of sextupole.
- Measurement

Symplectic expression of the chromaticity

- Hamiltonian which gives the chromaticity is obtained and is used in the beambeam simulation.
- 10xn coefficients are determined from 10xn chromaticities.

Y. Seimiya at al.

$$(
u_{x,n}, eta_{x,n}, lpha_{x,n}, lpha_{x,n},
u_{y,n}, eta_{y,n}, lpha_{y,n}, r_{i,n})$$
 \downarrow
 $H = \sum_{n=1} (a_n x^2 + b_n x \bar{p}_x + c_n \bar{p}_x^2 + u_n y^2 + v_n y \bar{p}_y + w_n \bar{p}_y^2 + d_n x y + e_n x \bar{p}_y + f_n \bar{p}_x y + g_n \bar{p}_x \bar{p}_y) \delta^n$

Fig. 13 Hor. Beam size (up), Vertical Beam size (middle), and Luminosity (down) at different settings of chromaticities with vertical tune Nuy=41.58 (BB: only beam-beam added, BB+Chrom. 1: 2008-10-27-sad file, BB+Chrom. 2: 2008-10-27-SAD_xy file, Experiment: measured chromaticities) ←

Summary for the present operation

- Life time issue is solved. The beam-beam parameter is the highest in the world except LEP.
- Luminosity can be achieved 2x10³⁴ soon, but still lower than our expectation.
- Linear X-Y coupling and dispersion errors does not seem to be well controlled.
- Their chromatic effect is next subject.
- Skew sextupole magnets placed at dispersive section can control the chromaticity, and is installed this shutdown.
- The very high beam-beam parameter seems to be hard to realize.
- Crab cavity works well, thus we continue the tuning of the parameters with taking the data.
- It may be the time to study another possibilities.

SuperBunch-crab waist option

- We have some difficulties to go the scheme with keeping the present luminosity.
- To increase the luminosity step by step, β_x at IP should be reduced, with keeping ϵ_x . Because the present ξ_x , which is >0.1, should be decrease first.
- Low β_x had been tried a long ago. In present KEKB, β_x <0.5m seems to be difficult to inject the beam, though dynamic β may affect.
- We should try low β_x at another tune operating point far from 0.5 again.

SuperBunch/Micro-beta approach

- Decrease β_x and β_y with keeping $(\epsilon_x \beta_x)^{1/2}/\beta_y$
- ξ_y~(β_y /ε_y)^{1/2}, ξ_x~β_x

S

• $L^{N}/(\beta_y)^{1/2}$

Х

parameters of several cases (5000 bunches)

	Super KEKB	Normal ε	LER low-ε	L/H low-ε	KEKB test
εx (nm)	18н/ 24 ∟	10/10	1/10	1/1	18/18
εy(nm)	0.09/0.24	0.1	0.01/0.04	0.01/0.01	0.18/0.18
βx (mm)	200	10/10	10/10	10	50
βy (mm)	6/3	0.6/0.6	0.8/0.2	0.2	3
σz (mm)	3.5/6	6	6	6	6
φσz/σχ	0.0	9	28/9	28	2.2
ne	5.25x10 ¹⁰	2.2x10 ¹⁰	2.2x10 ¹⁰	2.2x10 ¹⁰	1.75x10 ¹⁰
np	12.x10 ¹⁰	3.3x10 ¹⁰	3.3x10 ¹⁰	3.3x10 ¹⁰	4x10 ¹⁰
φ∕2 (mrad)	0	15	15	15	11
ξν,χ	0.397	0.0017	0.0018	0.0018	0.0108
ξν,γ	0.3	0.047/0.031	0.035/0.11	0.09	0.069
Lum (W.S.)	5x10 ³⁵	1x10 ³⁵	2x10 ³⁵	5x10 ³⁵	4x10 ³⁴
Lum (S.S.)	5x10 ³⁵				

Strong-strong simulation for the super Bunch scheme

- Slice longitudinal direction, 150 slices for $\phi \sigma_z / \sigma_x =$ 15-25.
- Collisions of 150x150 times were calculated for one revolution. The i-th and j-th slices collides at s_{ij}= (z_i-z_j)/2.
- Two type of the strong-strong simulation
 - -Gaussian approximation
 - -PIC solver, but Gaussian approximation is used for $\phi_{s_{ij}}/\sigma_x>2.5$ (preliminary).

Super B (Italy)					
	HER	LER			
Circumference	3016				
Energy	7	4			
ε _x /ε _y	1.6x10 ⁻⁹ /4x10 ⁻¹²	2.8x10 ⁻⁹ /7x10 ⁻¹²			
σ _z	0.006	0.006			
β _x /β _y	0.02/0.00039	0.035/0.00022			
N±	5.52x10 ¹⁰	5.52x10 ¹⁰			
$v_x/v_y/v_s$	0.57/0.60/0.01	0.57/0.60/0.01			
φ (φσ _z /σ _x)	0.024(25)	-15			

• M. Biagini et al.

Luminosity

- Gaussian approximation
- PIC simulation, which is the first trial, showed a low luminosity now. Numerical errors are doubted. Revised simulation is on going.

Beam size

- The beam sizes given by Gaussian approximation agree with those by the weak-strong simulation.
- Strange behavior in PIC model.

Coherent motion in Gaussian model

• Coherent motion is seen at the early stage maybe due to a miss-match, but damp in a few radiation damping time.

Growth of a coherent motion is seen, but a numerical error is doubted.

Summary

- Super KEKB design with crab cavity. Beam-beam performance is L=5x10³⁵cm⁻²s⁻¹ for β_x =0.2m. It degrade 20-30% for β_x =0.4m.
- A steady effort should be continued with the crab cavity operation.
- Every trials to increase the luminosity should be performed in KEKB. Travel focus is combined scheme of crab cavity and crab waist.
- To study the superbunch-crab waist scheme with keeping or improving the present performance, low β_x operation (~5-10cm) should be tried.

Beam-beam parameters for e+e- colliders

	DAFNE D	AFNE K	EKB k	KEKB E	SEPC-II C	ESR
	before	2008.12.10	2008.11.21	2008.11.21	2008.3.202	001.2 Rice
С	97	97	3016	3016	240	768.4
N bunch	110	105	199	1585	90	45
I+ (mA)	1.1	1.106	0.262	1.600	0.500	0.350
N+	2.02E+10	2.13E+10	8.27E+10	6.34E+10	2.78E+10	1.24E+11
E+	0.51	0.51	3.5	3.5	1.89	5.29
I–	1.5	1.431	0.162	0.970	0.500	0.350
N-	2.75E+10	2.75E+10	5.11E+10	3.84E+10	2.78E+10	1.24E+11
E-	0.51	0.51	8	8	1.89	5.29
εХ	3.40E-07	2.50E-07	1.80E-08	1.80E-08	1.44E-07	2.05E-07
εγ	1.70E-09	1.25E-09	9.00E-11	9.00E-11	1.44E-09	2.05E-09
β x	1.7	0.26	1.5	1.5	1.00E+00	0.9381
βy	0.017	0.0095	0.0059	0.0059	1.50E-02	0.018
τx/Τ	110000	110000	4000	4000	31900	0
ξν +=2 re β L/γ N f	0.0210_	0.0315	0.0861	0.0802	0.0073	0.0561
ξν–=2 re β L/γ N f	0.0154	0.0243	0.0609	0.0579	0.0073	0.0561
L (measure)	1.5E+32	4.05E+32	2.90E+33	1.65E+34	1E+32	1.25E+33

Near the half integer tune in Horizontal

• Transformation

$$\begin{aligned} x_{n+1} &= \left(1 - \frac{\mu_x^2}{2}\right) x_n + \beta_x \mu_x p_{x,n} & x(n) = (-1)^n x_n \\ p_{x,n+1} &= -\mu_x x_n + \left(1 - \frac{\mu_x^2}{2}\right) p_{x,n} - F_x(x_{n+1}, y_{n+1}) & \mu_x = 2\pi(\nu_x - 0.5) \\ F(-x, y) &= -F(x, y) \end{aligned}$$

$$F_x(x,y) = F_x(x,0) + \underbrace{\frac{\partial F_x}{\partial y}}_{y=0} \underbrace{\frac{\partial F_x}{\partial y}}_{y=0} \underbrace{\frac{\partial F_x}{\partial y}}_{y=0} \underbrace{\frac{\partial F_x}{\partial y}}_{y=0} = 0 \qquad \frac{1}{2} \left. \frac{\partial^2 F_x}{\partial y^2} \right|_{y=0} y^2 \approx F_x(x,y) \times \frac{\sigma_y}{\sigma_x}$$

Vertical motion

Vertical map

$$y(n+1) = \cos \mu_y y(n) + \beta_y \sin \mu_y p_y(n)$$

$$p_y(n+1) = -\frac{1}{\beta_y} \sin \mu_y y(n) + \cos \mu_y p_y(n) - F_y(x(n+1), y(n+1))$$

$$F_y(\bar{x} + x_r, y) = F_y(\bar{x}, y) + \frac{1}{2} \left. \frac{\partial^2 F_y}{\partial x^2} \right|_{x=\bar{x}} \langle x_r^2 \rangle + \dots$$

- F_y fluctuates due to
- If horizontal motion is chaotic, stochasticity of the vertical motion increases, with the result that emittance growth is enhanced.

$$v_x = 0.505$$

- X motion is clearly solved at v_x =0.505.
- Y motion is bound on surface. No emittance growth.

for luminosity.

