Beam-beam simulations for SuperKEKB Phase-3

Demin Zhou

Acknowledgements: K. Ohmi, Y. Ohnishi, A. Morita

SuperKEKB mini-optics meeting Apr. 04, 2019, KEK

Outline

► Introduction

Simulation using BBWS and BBSS

► Summary

1. Introduction

> Phase-3 machine parameters (Early stage)

• Ref. A. Morita, Talk at SuperKEKB commissioning meeting, Oct. 12, 2018

	1		1(op1)		1(op2)		2019.03.30		2019.04.02	
	HER	LER	HER	LER	HER	LER	HER	LER	HER	LER
I _b (A)	1.0	1.2	1.0	1.2	1.0	1.2	0.21	0.26	0.17	0.22
# bunch	1576		1576		1576		789		789	
ε _x (nm)	4.6	2.0	4.6	2.0	4.6	2.0	4.728	1.731	4.537	1.641
ε _y (pm)	368	160	160	160	160	160	122.5	40	53.33	13.33
β _x (mm)	100	100	100	230	80	80	200	200	100	200
β _y (mm)	3	3	3	3	3	3	4	4	3	3
σ _z (mm)	6	6	6	6	6	6	6	6	6	6
Vx	45.57	44.57	45.57	44.57	45.57	44.57	45.564	44.57 I	45.5439	44.5568
Vy	43.61	46.61	43.61	46.61	43.61	46.61	43.603	46.610	43.6082	46.618
Vs	0.0258	0.0225	0.0258	0.0225	0.0258	0.0225	0.0256	0.0219	0.02576	0.02205
ξ _y (Geom.)	0.0272	0.0262								
£(Geom.)	I.06E+34		I.36E+34		I.37E+34		I.50E+33		I.85E+33	
£(BBSS)	I.00E+34		9.30E+33		I.34E+34					

Talk on Dec.13, 2018

Parameter set (1)

Parameter set (1(op1))

e+(W)e-(S) Lum. (L/L₀)

e+(S)e-(W)

6

Parameter set (1(op2))

e+(W)e-(S) Lum. (L/L₀)

e+(S)e-(W)

Parameter set (2019.03.30)

Parameter set (2019.04.02)

120 e+ weak Π. I. 1 e-weak 100 80 rms σ_{x} (μ m) 60 40 20 0.56 0.58 Fractional v_x 0.52 0.6 0.62 0.64 0.5 0.54 1000 e+ weak 11 e-weak 11 800 rms σ_y (nm) 600 400 200 1 1 11 . . н 11 н 0.5 0.52 0.56 0.58 0.6 0.62 0.64 0.54 Fractional v_x

> All parameter set (1): $v_y = *.61$

• Scan of v_x (same fractional part for LER and HER)

Beam sizes for v_{s+}=.0225, v_{s-}=.0258

► All parameter set (1): v_x=*.56

- Scan of v_y (same fractional part for LER and HER)
- Beam very unstable for v_y<*.53

Beam sizes for v_{s+}=.0225, v_{s-}=.0258

► All parameter set (1): v_x=*.56

- Scan of v_y (same fractional part for LER and HER)
- Beam very unstable for v_y<*.53

100

e- beam

e+ beam -

All parameter set (1(op1)): v_y=*.61

Scan of v_x (same fractional part for LER and HER)

Change parameters(1 -> 1(op1)): $\beta^*_{x+}=0.1 \text{ m} \rightarrow 0.23 \text{ m}$ (equalize σ^*_x) $\epsilon_{y-}=0.368 \text{ nm} \rightarrow 0.16 \text{ m}$ (equalize σ^*_y)

Beam sizes for v_{s+}**=.0225, v**_{s-}**=.0258**

> All parameter set (1(op2)): $v_y = *.61$

Scan of v_x (same fractional part for LER and HER)

Change parameters(1 -> 1(op2)): $\beta_{x-}^*=\beta_{x+}^*=0.1 \text{ m} -> 0.08 \text{ m} (\text{squeeze } \sigma_x^*)$ $\epsilon_{y-}=0.368 \text{ nm} -> 0.16 \text{ m} (\text{equalize } \sigma_x^*)$

Beam sizes for v_{s+}=.0225, v_{s-}=.0258

4. Summary

Personal comments

- Squeezing βx* is essential in suppressing beam-beam resonances:
 * v_x-{1,2,3,4}v_s=N/2
 - * ν_x{+-}4ν_y+α=Ν
- General agreements found between BBSS and BBWS
- Coherent beam-beam instability or emittance growth needs strong-strong simulations (BBSS)