Weak-strong beam-beam simulations for SuperKEKB Phase-2

Demin Zhou

Acknowledgements:

K. Ohmi, Y. Ohnishi, Y. Funakoshi, K. Hirosawa, H. Koiso, N. Iida, Y. Zhang

SuperKEKB beam-beam performance meeting Jun. 14, 2018, KEK

Outline

Introduction

Tune scan using BBWS

• Weak-strong simulations: Principle investigations, not good for predicting final lum. performance of a collider

- > Tune scan with beam
- > Summary

> Observations in Phase-2

- Peak luminosity lower than predictions via simulations
- Easy blow-up in e- beam (HER)
- Small good lum. area in tune space via tune scan
- Unexpected Belle II detector background
- No (or small) gain via squeezing β_{x,y}*

> Observations in Phase-2

- Peak luminosity lower than predictions via simulations
- Easy blow-up in e- beam (HER)
- Small good lum. area in tune space via tune scan
- Unexpected Belle II detector background
- No (or small) gain via squeezing β_{x,y}*
- General remarks

• Large crossing angle: long-time investigations and experiences with realistic machines

• "Nano-beam scheme": Extremely large Piwinski angle (>= 10) with optional crab waist: popular idea (Super Tau/Charm, Super B, FCCs ...) but lack of experiences with realistic machines. SuperKEKB is showing ... Where we are? Where we go?

> Phase-2 machine parameters

• Full crossing angle: θ=0.083 rad

Parameters can be different from operational ones because of wrong RF voltage

	200/6		200/4		100/4		100/2	
	HER	LER	HER	LER	HER	LER	HER	LER
E (GeV)	7.007	4	7.007	4	7.007	4	7.007	4
I₀ (mA)	285	340	285	340	285	340	285	340
# bunch	789		789		789		789	
ε _x (nm)	4.7	2.0	4.7	2.0	4.5	1.9	4.5	1.9
ε _γ (pm)	47	20	47	20	4.5	19	45	19
ε _z (μm)	3.7	4.5	3.7	4.5	3.4	3.5	3.4	3.6
βx (mm)	200	200	200	200	100	100	100	100
β _y (mm)	6	6	4	4	4	4	2	2
σ _z (mm)	5.8	5.9	5.8	5.9	5.3	4.6	5.3	4.7
VX	45.57	44.57	45.57	44.57	45.57	44.57	45.57	44.57
vy	43.60	46.60	43.60	46.60	43.60	46.60	43.60	46.60
Vs	0.0234	0.0176	0.0234	0.0176	0.0258	0.0223	0.0258	0.0225

► Geometric lum. formula

- \bullet Large Piwinski angle $\phi \gg 1$
- Negligible hourglass effect in overlap region
- Flat beam

$$L_{0} = \frac{N_{+}N_{-}f_{0}N_{b}}{2\pi\sqrt{\sigma_{x+}^{2} + \sigma_{x-}^{2}}\sqrt{\sigma_{y+}^{2} + \sigma_{y-}^{2}}}$$

$$L = L_0 R_{H\theta}$$

$$R_{H\theta} \approx \frac{1}{\sqrt{1 + \frac{\sigma_{z+}^2 + \sigma_{z-}^2}{\sigma_{x+}^2 + \sigma_{x-}^2} \tan^2 \frac{\theta}{2}}} \approx \frac{1}{\phi}$$

$$\phi = \sqrt{\frac{\sigma_{z+}^2 + \sigma_{z-}^2}{\sigma_{x+}^2 + \sigma_{x-}^2}} \tan \frac{\theta}{2}$$

Generalized Piwinski angle

> Optics: HER 200/4 mm and LER 200/4 mm

7

• Weak beam: LER:

Luminosity

> Optics: HER 200/4 mm and LER 200/4 mm

• Weak beam: LER:

Luminosity

Geometric luminosity: L=4.2x10³³cm⁻²s⁻¹

Beam-beam resonances:

$$\nu_{x} - k\nu_{s} = N, \quad k = 1, 2$$

$$2\nu_{y} - j\nu_{s} = N, \quad j = 1, 2, 3, 4$$

$$\nu_{x} + 2\nu_{y} + k\nu_{s} = N, \quad k = 1, 2, 3, 4$$

$$\pm \nu_{x} + 4\nu_{y} + k\nu_{s} = N$$

Lattice resonances:

$$\nu_x - \nu_y + k\nu_s = N, \quad k = -1, 0, 1$$

> Optics: HER 100/2 mm and LER 100/2 mm

• Weak beam: LER:

Luminosity

Geometric luminosity: L=7.1x10³³cm⁻²s⁻¹

Good lum. region fairly large around (.57, .60)

> Optics: HER 200/6 mm and LER 200/6 mm

• Weak beam: HER:

Luminosity

Geometric luminosity: L=3.5x10³³cm⁻²s⁻¹

Strong high-order beam-beam resonances:

$$\pm\nu_x + 4\nu_y + k\nu_s = N$$

=> Small good lum. region around working point (.57,.60)

➤ Optics: HER 200/4 mm and LER 200/4 mm

• Weak beam: HER: plots with normalization

Luminosity

Geometric luminosity:

L=4.2x10³³cm⁻²s⁻¹

Beam-beam resonances relaxed?

➤ Optics: HER 200/3 mm and LER 200/4 mm

• Weak beam: HER: plots with normalization

Luminosity

Geometric luminosity:

L=4.8x10³³cm⁻²s⁻¹

Beam-beam resonances relaxed?

➤ Optics: HER 100/4 mm and LER 100/4 mm

• Weak beam: HER: plots with normalization

Luminosity

Geometric luminosity: L=5.1x10³³cm⁻²s⁻¹

Simulations not finishes...

But beam-beam resonances NOT relaxed?

➤ Optics: HER 100/2 mm and LER 100/2 mm

• Weak beam: HER: plots with normalization

Luminosity

Geometric luminosity:

L=7.1x10³³cm⁻²s⁻¹

Surprisingly beam-beam resonances not further relaxed...

=> Need further studies.

Compare with Lifetrac by D. Shatilov (Talk at IHEP, Apr. 11, 2014)

• w/o crab waist

<figure><figure>

 $\beta_{\rm y}$ = $\sigma_{\rm z}$ / ϕ

This plot approximately corresponds to the scheme currently adopted for SuperKEKB

Thanks to Y. Zhang for sending the slides

Compare with Lifetrac by D. Shatilov (Talk at IHEP, Apr. 11, 2014)

• w/o crab waist

Crab waist is powerful... Mission impossible?

Thanks to Y. Zhang for sending the slides

Prediction of luminosity by BBWS

- Working point: (.57, .60)
- Strong-strong simulation undergoing (K. Hirosawa)

HI	ER	-	ER	Geometric	Lum. by BBWS	
β _x *	β _y *	β _x *	β _y *	Lum.		
200	6	200	6	3.48	2.93	
200	4	200	4	4.23	3.56	
200	3	200	4	4.84	4.26	
100	4	100	4	5.08	4.09	
100	2	100	2	7.15	5.58	

3. Tune scan with beam

> 200/4 mm optics (both HER and LER)

• 2018.06.07 Day shift (2018_06_07_09_oki_fukuma.pptx)

3. Tune scan with beam

> 200/4 mm optics (both HER and LER)

• 2018.06.07: HER tune survey

Luminosity is sensitive to vertical beam sizes

3. Tune scan with beam

> 200/4 mm optics (both HER and LER)

• 2018.06.07: HER tune survey

When σ_y@HER shrinks, σ_y@LER blow up (by factor of ~2)!

4. Summary

In the present parameter regime for SuperKEKB

- Beam-beam effects are unexpectedly strong
- Various beam-beam resonances observed in tune scan via BBWS
- Near the (.57,.60) working point (current Phase-2 commissioning),

the beam-beam resonance v_x+4v_y+k*v_s=N

Tune scan with beam

- The two beams (e+ and e-) need to be balanced (bunch current, beam sizes, beta*, etc.)
 - How to balance: B-B simulations in parallel to beam tuning

Future tuning strategy

- Strong-strong simulation (Ohmi-san and Hirosawa-san)
- Optimizations of key parameters: (I_{bunch} , $\beta_{x,y}^*$, v_x , v_y) for HER and
- LER => More beam-beam simulations

• Optimizations of linear and nonlinear optics via optics measurements/corrections => Suppress lattice nonlinearity

• Crab waist (?)

Backup

Optics: HER 200/4 mm and LER 200/4 mm

• Weak beam: HER:

Luminosity

0.6

Fractional v.

0.55

0.65

0.7

0.5

0.5

Beam-beam resonances also plotted

23

0.75

> Optics: HER 200/3 mm and LER 200/4 mm

• Weak beam: HER:

Luminosity

Fractional v_y 0.65 0.6 0.55 0.5 **Beam-beam** 0.5 0.55 resonances also plotted 0.75 0.7 Fractional v_y 0.65 0.6 0.55

24

> Optics: HER 200/6 mm and LER 200/6 mm

• Weak beam: HER:

Luminosity

Beam-beam resonances also plotted

25

0e-07

Optics: HER 200/6 mm and LER 200/6 mm

- Weak beam: HER: plots with normalization
- Luminosity

2.0e+00

1.8e+00

1.6e+00

1.4e+00

1.2e+00

1.2e+00

1.2e+00

1.1e+00

1.1e+00

Optics: HER 200/4 mm and LER 200/4 mm

- Weak beam: HER: plots with normalization
- Luminosity

2.0e+00

1.8e+00

1.6e+00

1.4e+00

1.2e+00

1.2e+00

1.2e+00

1.1e+00

1.1e+00

0.75

0.75

Optics: HER 200/3 mm and LER 200/4 mm

• Weak beam: HER: plots with normalization

2.0e+00

1.8e+00

1.6e+00

1.4e+00

1.2e+00

1.2e+00

1.2e+00

1.1e+00

1.1e+00

0.75

0.75

Luminosity

> Optics: HER 100/4 mm and LER 100/4 mm

• Weak beam: HER: plots with normalization

 σ_x/σ_{x0} (RMS)

Optics: HER 100/2 mm and LER 100/2 mm

• Weak beam: HER: plots with normalization

2.0e+00

1.8e+00

1.6e+00

1.4e+00

1.2e+00

1.2e+00

1.2e+00

1.1e+00

1.1e+00

0.75

0.75

Luminosity

