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1.1.1 Introduction 

KEKB will achieve the integrated luminosity of 1 ab-1 this or next year. We are 
planning an upgrade of KEKB. The integrated luminosity should target 10 ab-1 next 5-
10 years. The peak luminosity should be 10 times higher than the present value of 
1.7x1034 cm-2s-1.  Various collision schemes are proposed to boost the luminosity 
performance. Every collision schemes should be studied for the upgrade. Here we 
present the trials for the collision schemes. 

1.1.2 Collision schemes for B factories 

1.1.2.1 Crossing angle  

Various collision schemes are proposed for high luminosity B factories. In recent 
colliders, multi-bunch collision is crucial to get gain the multiplicity of the number of 
bunches. The crossing angle is introduced to avoid parasitic encounters.  

An essential of crossing angle is expressed by transformations as shown in Figure 1. 
The electro-magnetic field is formed perpendicular to the traveling direction. The 
transformation which particles in the beam experience is expressed by [1,2] 

€ 

Δpx = −Fx (x + 2sφ,y)  

€ 

Δpy = −Fy (x + 2sφ,y)                                               (1) 

€ 

Δδ = −φFx (x + 2sφ,y)   
where s=(z-zc)/2 and φ is the half crossing angle. The transformation is separated by 
three parts. 

  

€ 

eφpxz  e−:Hbb :  e−φpxz                                                (2) 
where Hbb is Hamiltonian for the beam-beam interaction. The first transformation is 
given by 

€ 

e−φ :pxz:x = x −φ[pxz,x] = x + φz  

€ 

e−φ :pxz:δ = δ − φ[pxz,δ] = x −φpx                                         (3) 
The residual of the first and third transformations gives the transformation for δ in 
Eq.(1). This expression, which is called Lie operator expression, is presented in [3]. 
Note the operator order;   

€ 

  denotes the multiplication of transformations, which is 
inverse order of Lie operator multiplication. 

Both beams are transferred by the same transformation. The term φzc appears from 
2sφ in Eq.(1). This transformation is actually equivalent to the appearance of z 
dependent dispersion (ζx) at the collision point: i.e., the revolution matrix including the 
crossing transformation is expressed by  

  

€ 

M = eφpxz M0  e
−φpxz                                             (4) 
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where M0 is the revolution matrix of the lattice. Now the beam envelope matrix has a 
finite element of  <xz>= ζxσz= φσz [4], for the weak limit of the beam-beam interaction. 
The collision is now regarded as head-on collision with tilt beams in x-z plane as shown 
in Figure 2. Electro-magnetic field is the perpendicular to the moving direction now. 

Another important point of the crossing angle is that the collision area in the two 
beams is limited. For long bunch compare than beta function, tune shift enlargement 
due to the hourglass of the beta function is avoidable. The long bunch scheme is called 
superbunch scheme [5]. This feature is great merit for collision with extreme small beta 
function. The bunch length and beta function can be chosen independently in this 
scheme. The relations of optics and beam-beam parameters are summarized in as 
follows. 

 
Table 1:  

 

 

 
Figure 1: Transformation for crossing angle. 

 

 
Figure 2: Collision with crossing angle is equivalent to head-on collision with tilt 

beam. 
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1.1.2.1 Crab crossing 

The crab crossing [1,6] is basically meaningful for the short bunch scheme. A 
transformation, which is equivalent to the crossing angle, is applied before and after the 
collision, 

  

€ 

e−φpxz  eφpxz  e−:Hbb :  e−φpxz  eφpxz = e−:Hbb :,                                 (5) 
thus the effective transformation is the same as that for the head-on collision. To realize 
the transformation, crab cavities, which gives the transformation, 

€ 

e−V ':xz:/E0 , are placed at 
locations where linear transformation TA is satisfied to, 

  

€ 

eφpxz = TA  e
−V ':xz:/E0 TA

−1 = e−(V ' /E ):T xz:,                                    (6) 
where 

  

€ 

TA  x =
βx
*

βx,c
x cosϕx + βx

*βx,c px sinϕx

                               (7)
 

ϕx is the horizontal betatron phase difference between the collision point and crab cavity 
position, and βx* and βx,c are horizontal beta functions at the collision point and crab 
cavity position. 

The well-known formula for crab angle and voltage is given by choosing the betatron 
phase difference of π/2. 

€ 

φ =
ωcrabV
cE0

βx,cβx
*

                                               (8)
 

Only one crab cavity can be possible to realize the transformation  
  

€ 

eφpxz M0  e
−φpxz = TB  e

−V ':xz:/E0 TB
−1
M0                                (9) 

Basically this procedure is really 6x6 optics matching for the dispersion ζx. 

1.1.2.2 Crab waist scheme 

A transformation with the form exp(-a:py
2:/2)  controls the vertical waist position with 

keeping minimum beta function. The transformation is represented by matrix as 

€ 

y
py
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€ 
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 
                                  (10) 

Twiss parameters at the collision point are transferred by 

€ 

β −α

−α γ
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 
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 
                                (11) 

This transformation is equivalent to shift the waist position of a. 
The waist position is shifted so as to linearly depend on the horizontal coordinate x 

under the presence of the crossing angle in the crab waist scheme [7]. The 
transformation at the collision point is expressed by 

  

€ 

eaxpy
2

 eφpxz  e−:Hbb :  e−φpxz  e−axpy
2

                                (12) 
The transformation is rewritten as  

  

€ 

eφpxz  e−φpxz  eaxpy
2

 eφpxz  e−:Hbb :  e−φpxz  e−axpy
2

 eφpxz  e−φpxz  
  

€ 

= eφpxz  ea(x−φz)py
2

 e−:Hbb :  e−a(x−φz )py
2

 e−φpxz                                     (13) 
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Choosing a=1/2φ, the waist position is s=z/2-x/2φ. Beam particles satisfying x=zφ, 
which collide with central axis of another beam at s=0, have the waist at s=0. Particles 
with x=zφ +Δx, which collide with the centre at s=−Δx/2φ, have the waist s=−Δx/2φ. 
This feature minimizes the beam-beam effect for colliding particles. The transformation 
exp(-:xpy

2:/2φ) is realized by sextupole magnet: that is, at least two sextupole magnets 
are located at both side of the collision point. The betatron phase difference is nπ for x 
and (1/2+n)π for y, and the strength is determined by Eq. (7). 

 
 Figure 3: Deviation of collision point for x and waist position in crab waist scheme. 
 
 
Characteristic of the crab waist scheme can be seen following picture. Coordinates x 
and y are transferred by the crab waist action near the collision point as follows, 

€ 

y(s) = y0 + xpy 2φ + pys ≈ xpy 2φ + pys 

€ 

x(s) = x0 + pxs ≈ x0                                                (14) 
Beam distribution is Gaussian except for the collision point. Near the collision point, 
the distribution is distorted by Eq.(14). The distribution is roughly given by  

€ 

exp − x 2

2εxβx
−
βy py

2

2εy

 

 
 

 

 
 = exp − x 2

2εxβx
−

βy y
2

2εy (x 2φ + s)2
 

 
 

 

 
 
 ,                   (15) 

where exp(-y0
2/2εyβy) is neglected, because py is dominant for s>βy. Figure 3 shows the 

contour of the distribution. Particles located at x collide with another beam at their waist 
position as shown in Figure 3. 
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Figure 3: Particle distribution of colliding beam in the crab waist scheme. Collision 
arises at the point with the minimum y size. Another beam distributes symmetric for x. 
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1.1.2.3 Travel focus scheme 

Beam particles with z collide with the center of another beam at s=z/2 in the travel 
focus scheme [8]. The particles with z should have the waist position at s=z/2 to 
minimize the beam-beam effect. The transformation exp(-py

2z/4) realizes the travel 
focusing: 

  

€ 

ezpy
2 4
 e−:Hbb :  e−zpy

2 4                                                      (16) 
RF focusing is used for the transformation. However heavy development works are 
necessary for the RF device. We know the crab cavity exchanges x and z.  

  

€ 

e−φpxz  expy
2 4φ
 eφpxz  e−:Hbb :  e−φpxz  e−xpy

2 4φ
 eφpxz                          

  

€ 

= e(x−φz )py
2 4φ
 e−:Hbb :  e−(x−φz )py

2 4φ                                    (17) 
The first and last operator exp(+-φpxz) at the first line of Eq.(17) are actions of the crab 
cavities, while 3rd and 5th are the crossing angle. The 2nd and 6th operators are from two 
sextupole magnets located at the both sides of the collision point. Additional two 
sextupole magnets in both sides are added to cancel the residual nonlinear term [9]. 

  

€ 

expy
2 4φ
 e−(x−φz )py

2 4φ
 e−:Hbb :  e−(x−φz )py

2 4φ
 expy

2 4φ  
  

€ 

= ezpy
2 4
 e−:Hbb :  e−zpy

2 4                                               (18) 
Realistic arrangement of IR is given by chosen betatron phase so as to realize the 
transformation as is done in Eq. (7). Two pairs of crab cavities, which are inserted 
between two sextupole magnets, are located at the horizontal betatron phase difference 
of (1/2+n)π. The sextupole magnets are located at the vertical betatron phase difference 
of (1/2+n)π. The phase difference of two sextupole magnets is π or 2π depending on the 
sign of magnets. In this scheme two crab cavity is necessary. 

In the travel focus scheme, the waist position shifts for z but does not for s: that is, 
particles at z have waist position for the variation of s, and the waist position is located 
at the centre (z=0) of the colliding beam. The hourglass effect is not avoidable even in 
the travel waist scheme. 

1.1.3 Study of the collision schemes in Super KEKB 

These collision schemes has to be studied to upgrade KEKB. The crab cavity has 
been studied since 2007 at KEKB. The crab cavity was expected to boost the luminosity 
twice higher [10]. Figure 4 shows the beam-beam parameter as a function of the bunch 
population of HER, where the transparency condition is assumed. 

The beam-beam parameter, which is regarded as a normalized luminosity, is defined 
by 

€ 

ξn =
2reβy,±L
N±γ± fcol

 .                                                    (19) 

The luminosity is 4.5x1035 cm-2s-1 for the nominal parameter, N(HER)=5.5x1010 and 
2ns collision repetition.  

Figure 5 shows the beam-beam parameter as a function of the travel focus strength. 
The beam-beam parameter does little depend on the strength. The vertical beam size, 
which is simple 2nd order moment, has a minimum at the optimum strength. The tail 
distribution should be improved by the travel focus, while the luminosity performance 
is not remarkable.  
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Figure 4: Beam-beam parameter with and without crab cavity given by a strong-strong 
simulation. Number of the longitudinal slice in the simulation is 5. 
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Figure 5: Effect of travel focusing in the simulation. The optimum is Kz=-0.5, where 
exp(Kz:py

2z/2:) 
 
Using the travel-focusing scheme, higher luminosity is targeted. Figure 6 shows the 
beam-beam parameters as a function of the bunch population of HER beam given by 
both of strong-strong and weak-strong simulations. The corresponding luminosity is 
8.0x1035 cm-2s-1 for the nominal parameter, N(HER)=5.5x1010 and 2ns collision 
repetition. 
 

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  1  2  3  4  5  6

! y

N(HER) (x1010)

"x,y=9,0.045 nm
#x,y=20,0.4 cm
$z=3mm
Travel focus

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6

! y

N(HER) (x1010)

"x,y=9,0.045 nm
#x,y=20,0.4 cm
$z=3mm
Travel focus
Weak-strong

 
Figure 6: Beam-beam parameters given by strong-strong and weak-strong simulations. 
 

Superbunch and crab waist scheme have been studied. The simulation for 
superbunch scheme is very hard; because a bunch has to be sliced into many pieces and 
a number of collisions between slices, square of the number of slices, have to be 
calculated per one revolution. Figure 7 shows the luminosity evolution in a strong-
strong simulation for Super B parameters [11]. This luminosity is given for the collision 
repetition of 2 ns. Since it is 4 ns for the present design of Super B, the luminosity is 
0.7x1036 cm-2s-1. The simulation, which is preliminary, is very hard and can contain 
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numerical difficulties. Since better simulations will give better luminosity, this result 
can be considered as a lower bound for an ideal machine. The beam-beam parameter is 
0.08 using Eq. (19), where βy=0.22/0.39 mm, N=5.52x1010 and E=4/7 GeV. 
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Figure 7: Luminosity evolution in a strong-strong simulation for Super B parameters. 
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