Beam-beam at SuperKEKB

Acknowledgments

EIC beam-beam meeting, BNL, Nov. 2, 2022

Demin Zhou Accelerator theory group, Accelerator laboratory, KEK

K. Ohmi

Status of beam-beam simulations

- Weak-strong model + simple one-turn map: BBWS code [1] \bullet
 - its EM fields expressed by the Bassetti-Erskine formula.
 - chromatic perturbation, synchrotron radiation damping, quantum excitation, crab waist, etc.
- Weak-strong model + full lattice: SAD code \bullet
 - tracking.
 - artificial SR damping/excitation, etc.); ...

Strong-strong model + simple one-turn map: BBSS code [1]

- Both beams are represented by N macro-particles -
- PIC, Gaussian fitting for each slice, ...
- For SuperKEKB, it is hard to include lattice.
- GPU-powered strong-strong model + full lattice: SCTR code \bullet
 - Under development (K. Ohmi) with KEK/IHEP/J-PARC collaboration -

[1] K. Ohmi, Talk presented at the 2019 SAD workshop, https://conference-indico.kek.jp/event/75/.

The weak beam is represented by N macro-particles (statistical errors ~ $1/\sqrt{N}$). The strong beam has a rigid charge distribution with

The simple one-turn map contains lattice transformation (Tunes, alpha functions, beta functions, X-Y couplings, dispersions, etc.),

The BBWS code was implemented into SAD as a type of BEAMBEAM element, where the beam-beam map is called during particle

Tracking using SAD: 1) Symplectic maps for elements of BEND, QUAD, MULT, CAVI, etc. 2) Element-by-element SR damping/ excitation; 3) Distributed weak-strong space-charge; 4) MAP element for arbitrary perturbation maps (such as crab waist, wakefields,

The one-turn map is the same as weak-strong code. The Beamstrahlung model is also available. Choices of numerical techniques:

- HBCC machine studies with $\beta_v^* = 1$ mm in 2021 and 2022:
 - lacksquarecloser to simulations

After fine-tuning of BxB FB system in 2022, observed vertical beam sizes blowup became much more "normal" and

Summary

- Prediction of luminosity via beam-beam simulations requires reliable models of 1) beam-beam interaction, 2) machine imperfections, and 3) other collective effects.
- With progress in machine tunings, the measured luminosity of SuperKEKB is approaching predictions of BB simulations (BB + Simple lattice model + Impedance models).
- The main focuses on simulations for SuperKEKB
 - SS BB simulations with inclusion of multiple dynamics
 - Speedup of SS simulations with GPU-acceleration
- The main focuses on experimental studies at SuperKEKB
 - Solve the problem of sudden beam losses \rightarrow Remove the limit on total currents -
 - Solve the problem of the interplay between vertical impedance and BxB FB system \rightarrow Remove its impact on beambeam at high bunch currents.
 - Solve the problem of linear optics distortion at high total beam currents \rightarrow Remove its impact on beam-beam, luminosity and detector background
 - Solve the problem of luminosity "loss" related with injection \rightarrow Remove the impact of injection on luminosity measurement (ECL detector)
 - Investigate crab waist settings \rightarrow Reduce the imperfections in crab waist

Backup

- HBCC machine studies with $\beta_v^* = 1$ mm in 2021 and 2022:
 - High-bunch current collision (HBCC) machine studies were done to extract the luminosity performance \bullet
 - Lsp slope (experiments) improved in 2022, but it still dropped fast \bullet

	2021.1	2.21	2022.	04.05	Commonto
	HER	LER	HER	LER	Comments
I _{bunch} (mA)	le	I.25*le	le	I.25*le	
# bunch	393	393		93	Assumed value
ε _x (nm)	4.6	4.0	4.6	4.0	w/ IBS
ε _y (pm)	35	20	30	35	Estimated from XRM data
β _x (mm)	60	80	60	80	Calculated from lattice
β _y (mm)	I	I	Ι	I	Calculated from lattice
σ _{z0} (mm)	5.05	4.60	5.05	4.60	Natural bunch length (w/o MWI)
Vx	45.53	44.524	45.532	44.524	Measured tune of pilot bunch
Vy	43.572	46.589	43.572	46.589	Measured tune of pilot bunch
Vs	0.0272	0.0233	0.0272	0.0233	Calculated from lattice
Crab waist	40%	80%	40%	80%	Lattice design

Status of beam-beam simulations

BBSS simulations: PIC vs. Gaussian fitting model \bullet

- PIC method predicts lower luminosity (~5%).
- Using workstations(8 cores), one PIC simulation requires ~8 months, and a Gaussian-fitting simulation takes ~1.2 days.
- simulations based on the CUDA compiler (K. Ohmi, in collaboration with Y. Zhang and Z. Li (IHEP), T. Yasui (J-PARC)).
 - This will speed up our investigations, especially of the interplay between beam-beam and machine imperfections. -

	2021.1	2.21	Commente	
	HER	LER	Comments	
I _{bunch} (mA)	0.8	1.0		
# bunch	_			
ε _x (nm)	4.6	4.0	w/ IBS	
ε _y (pm)	35	20	Estimated from XRM data	
β _x (mm)	60	80	Calculated from lattice	
β _y (mm)			Calculated from lattice	
σ _{z0} (mm)	5.05	4.60	Natural bunch length (w/o MWI)	
Vx	45.53	44.524	Measured tune of pilot bunch	
Vy	43.572	46.589	Measured tune of pilot bunch	
Vs	0.0272	0.0233	Calculated from lattice	
Crab waist	40%	80%	Lattice design	

 $L_{sp} \approx$ $\sigma_{z+}^2 + \sigma_{z-}^2 \tan \frac{\theta_c}{2}$ $\sigma_{y+}^{*2} + \sigma_{y-1}^{*2}/$ $2\pi e^2 f_{\Lambda}$

"Vertical blowup" "Longitudinal blowup"

Significant progress has been achieved recently in developing GPU-based BB codes. Preliminary tests showed a speed-up factor of ~50 for PIC

- Filling the gap between simulated and measured Lsp
 - BBSS+PIC simulation showed 5% less Lsp at $I_{b+}I_{b-} = 0.8 \text{ mA}^2$.
 - Impedance effects:
 - Simulations showed less bunch lengthening than measurements. If measured bunch lengthening is applied, it gives ~10% extra loss of Lsp at $I_{b+}I_{b-} = 0.8 \text{ mA}^2$.
 - Vertical beam tilt due to monopolar wakes.
 - "-1 mode instability" due to interplay of FB and vertical impedance.
 - Lsp loss correlated with injection: ~10% at $I_{b+}I_{b-} = 0.3 \text{ mA}^2$ (not sure how much loss at high bunch currents).
 - Other sources of Lsp degradation without quantitative estimate.

- A mysterious phenomenon: Lsp is correlated with beam injection
 - All luminosity PVs gave a similar jump-response to injection stop/start.

- $L_{sp} \cdot \sqrt{\sigma_{y+}^{*2} + \sigma_{y-}^{*2}}$ still shows jump-response. It means there is a geometric loss of luminosity.

Blue: Luminosity by ECL

Online data: 2022-06-02 21:05 PM

