Beam-beam related issues

10th meeting of beam-beam workgroup, Jun. 30, 2022, KEK

- Demin Zhou
- Accelerator theory group, Accelerator laboratory, KEK

- Acknowledgments
- K. Ohmi, Y. Ohnishi, Y. Zhang, K. Matsuoka, S. Uehara, and members of the SuperKEKB commissioning group

Outline

- Recent machine status
- Identified issues limiting luminosity performance
- Updates on beam-beam simulations

- 30 days of machine status
 - Luminosity record: 4.707e34 cm⁻²s⁻¹. -

- 30 days of machine status

In addition to beam-beam effects, other factors affected machine performance: SR-heading induced optics distortion; Impedance effects (damaged collimators) in LER; Long-term (~1 week) stability of optics; Total currents limited by fast beam losses; ...

- Beam currents and luminosity history [1]
 - Achievements in 2022ab run: Maximum bunches stored: 2346; Maximum beam currents: 1.46/1.14 A.

[1] Y. Ohnishi, <u>https://www-linac.kek.jp/skekb/status/web/status_plan.md.html</u>

• Luminosity records [1]

- Peak luminosity 4.65 x10³⁴ (cm⁻²s⁻¹), June 8, swing, 2022
- Belle II HV ON

parameter	LER	HER	unit
Beam current	1321	1099	mA
Number of bunches	2249		
Bunch current	0.587 0.489		mA
Beam-Beam parameter ξ_{y}	0.0407 0.0279		
Σy*	0.303	μm	
σ _y *	0.215		μm
Tunes (x/y)	44.525 / 46.589	45.532 / 43.573	
Specific luminosity (x10 ³¹)	7.21		cm ⁻² s ⁻¹ /mA ²
Luminosity (x10 ³⁴)	4.65		cm ⁻² s ⁻¹

[1] Y. Ohnishi, <u>https://www-linac.kek.jp/skekb/status/web/status_plan.md.html</u>

- Peak luminosity 4.71 x10³⁴ (cm⁻²s⁻¹), June 22, day, 2022
- Belle II HV OFF

parameter	LER	HER	unit	
Beam current	1363 1118		mA	
Number of bunches	2249			
Bunch current	0.606 0.497		mA	
Beam-Beam parameter ξ_{y}	0.0398 0.0278			
Σy*	0.315	μm		
σ _y *	0.223		μm	
Tunes (x/y)	44.524 / 46.594 45.532 / 43.574			
Specific luminosity (x10 ³¹)	6.95	cm ⁻² s ⁻¹ /mA ²		
Luminosity (x10 ³⁴)	4.71	cm ⁻² s ⁻¹		

Issues identified: Limit of bunch current $I_{b+} \lesssim 0.7$ mA in physics run mode

• Severe machine failures happened when $I_{b+} > 0.7$ mA during the physics run

Beam loss accidents and bunch current

within a day after increasing the beam current at the three different N_{bunch} .

Courtesy of K. Matsuoka

The three big accidents of LER beam loss in 2022 happened at $I_h \gtrsim 0.7$ mA/bunch

Issues identified: Optics distortion by SR heating

- Current-dependent optics distortion
 - SR heating causes orbit distortion.
 - Beta-beat and global coupling get worse at high currents. ----
 - An unexpected β_v^* squeeze explains the Lsp gain.

 $I_{b+}I_{b-}$ (mA²)

Issues identified: Optics distortion by SR heating

Current-dependent orbit offsets at SLY* magnets

Issues identified: Impedance effects in LER

- Current-dependent single-beam blowup in LER
 - ---to collimators (D06V1 and D02V1).
 - TOP 4.2 mm, BTM -5.1 \rightarrow -8.0 mm.

Machine conditions: Single-beam, 393 bunches

This problem was solved by fine-tuning of FB system in Mar. 2022. But it appeared again, mainly due to new damages

- On Jun. 21, 2022, tunings were done to improve the blowup threshold: Vertical tune ν_v .582 \rightarrow .595; Gap of D06V1:

Issues identified: Impedance effects in HER

- Current-dependent single-beam vertical emittance in HER
 - No clear evidence of single-beam blowup (up to 0.64 mA/bunch) in HER

Machine conditions: Single-beam, 393 bunches

tance in HER 4 mA/bunch) in HEF

KCG shift report on high bunch-current collision study By D. Zhou, R. Ueki, M. Nishiwaki Jun. 21, 2022

			2022-06-21 1	6127137	Help 🔻
	-Channel Selector				
	KEKBLog	CaMonitor	Function	Filter	-
	Channel Informat				
	-Channel Informat	1011 Ved Single Rec	ord		
 1 100	KEKBLog://BM/D	CCT/BMHDCCT	CURRENT		
	Time Range: 06/2	1/2022 16:00:00	0 - 06/21/2022	17:00:00	
-MII_Y	A 1 CGHOPT:	EMIT_Y			
80	A 2 BMHDCCT	CURRENT			
-					
1					
a la, allilladd 1					
40					
1					
-					
20					
1					
250					
					7
	🗖 Auto	Repeat		Draw	
		-			

II HV ON (Jun. 8, 2022).

The injection was intentionally stopped to achieve the new record of 4.65e34 luminosity with Belle

,Yellow: Total luminosity ECL (20-second average)

Green: Specific luminosity (Lsp)

Yellow: Total luminosity ZDLM

Green: Total luminosity ECL (updated per 2.5 second)

* Peak luminosity always appears after injection stopped * Lsp always jump up after injection stopped

II HV OFF (Jun. 22, 2022).

• The injection was intentionally stopped to achieve the new record of 4.71e34 luminosity with Belle

- Analysis of KBlog data shows this phenomenon has been there since Phase-2
 - Lsp degradation (in the order of 10%) due to injection has been clearly observed.
 - injection stopped.

A sudden increase of Lsp causes a local peak luminosity. This is why we frequently saw the best luminosity just after

- The phenomenon: 2022-06-02 21:05 PM
 - All luminosity PVs gave a similar jump-response to injection stop/start.

-
$$L_{sp} \cdot \sqrt{\sigma_{y+}^{*2} + \sigma_{y-}^{*2}}$$
 still shows jump-response. It mear

Blue: B2_nsm:get:ECL_LUM_MON:lum_acc_corrected

ns there is a geometric loss of luminosity.

- Investigations are ongoing to understand the sources of Luminosity-Injection correlation \bullet
 - (quadrupole motion) or not.
 - possibility.

LER injection kickers: excite the stored beam and cause luminosity loss. But BxB FB system damps the dipole motion of the excited beam in <200 turns (~2 ms). It's not clear if the injection kickers cause emittance blowup

Injection background: It is suspected to affect luminosity measurement. Investigations are ongoing to check this

Updates on understanding the luminosity performance

- Known sources of luminosity degradation
 - Optics distortion due to SR heating; Luminosity "loss" correlated with injection.
- Sources to be investigated
- (WEPOPT064); M. Masuzawa et al. (TUOZSP2); S. Terui et al. (WEPOTK050).

Bunch lengthening; Chromatic couplings; Single-beam blowup in LER (Impedance effects and its interplay with FB);

Imperfect crab waist; Beam-beam driven incoherent synchrotron resonances; Interplay of BB, Iongitudinal and transverse impedances, and feedback system; Interplay of BB and nonlinear lattices; Coupled bunch instabilities.

• For further details, refer to IPAC2022 papers by Y. Funakoshi et al. (MOPLXGD1); D. Zhou et al.

- BBSS simulations: PIC vs. Gaussian fitting model \bullet
 - PIC method predicts lower luminosity (to be verified). -
 - One PIC simulation requires ~8 months, and a Gaussian-fitting simulation takes ~1.2 days... -
 - -Tests showed a speed-up factor of ~100 for weak-strong and ~4 for strong-strong BB simulations.

	2021.12.21		Commente
	HER	LER	Comments
I _{bunch} (mA)	0.8	1.0	
# bunch	-		Assumed value
ε _x (nm)	4.6	4.0	w/ IBS
ε _y (pm)	35	20	Estimated from XRM data
β _x (mm)	60	80	Calculated from lattice
β _y (mm)		I	Calculated from lattice
σ _{z0} (mm)	5.05	4.60	Natural bunch length (w/o MWI)
Vx	45.53	44.524	Measured tune of pilot bunch
Vy	43.572	46.589	Measured tune of pilot bunch
Vs	0.0272	0.0233	Calculated from lattice
Crab waist	40%	80%	Lattice design

Great progress was achieved recently in developing GPU-based BB codes (by K. Ohmi, in collaboration with Y. Zhang and Z. Li (IHEP)).

• BBSS simulations: Scan LER ν_{χ} (with LER ν_{χ} and HER $\nu_{\chi,\chi}$ fixed as the values of the parameter table of 2021.12.21)

values of the parameter table of 2021.12.21, BB+Wxy+Wz)

28

26

ਸੂ 24

22×ٰط

20

18

16

32

30

28

26

ਸ<u>਼</u> 24

ُ 22 ع

18

16

* The interplay of BB+Wxy+Wz causes instability, consistent with Y. Zhang and K. Ohmi's findings. * This instability has a threshold that is ν_{v} -dependent.

* This might explain ν_{y} of LER cannot approach design value .57, which HER has no problem.

• BBSS simulations: Scan LER ν_v with bunch currents varied (with LER ν_x and HER $\nu_{x,v}$ fixed as the

as the values of the parameter table of 2021.12.21)

- BBSS simulations: Scan LER ν_v with impedance models varied (with LER ν_x and HER $\nu_{x,v}$ fixed

Summary

- A new luminosity record was achieved at the end of 2022b run.
- heating; Single-beam vertical blowup in LER; Lsp-Injection correlation.
- discovered by Y. Zhang and K. Ohmi).

• Some issues limiting luminosity performance: Fast beam losses; Optics distortion caused by SR

• BBSS simulations show vertical instability driven by the interplay of BB+Wxy+Wz (which was

Backup

Y. Ohnishi

Injection background affects the online luminosity measurement ?

single beam emittance: 25 pm (I_{b+}: 0.4 mA)

ecloudstudy20220620d3_4_80_4_3_2_Others_INbRF

There is no electron cloud instability.

ecloudstudy20220620d3_4_80_4_3_2_Others_INb

Y. Suetsugu et al.

Y. Ohnishi

We adopted horizontal orbit feedback at SLY in HER.

