Updates on beam-beam simulations and results of recent beam-beam machine study

Demin Zhou

Accelerator theory group, Accelerator laboratory, KEK

Acknowledgements

Y. Funakoshi, T. Ishibashi, K. Ohmi, Y. Ohnishi, S. Terui, R. Ueki, and SuperKEKB commissioning group

6th meeting of beam-beam workgroup, Jan. 25, 2022, KEK

Outline

- Updates on beam-beam simulations for SuperKEKB
 - BBSS simulations of IP knobs (R3 and R4)
 - BBSS simulations of LER ν_{χ}
- Beam-beam study on Dec. 21-22, 2021
- Summary

- Simulations of IP knobs (R3 and R4) with longitudinal pseudo-Green function wakes
 - Beam parameters similar to observations on 2021.07.01. ----
 - Assumed principle of IP knobs:

$$\frac{\partial L(\overrightarrow{R})}{\partial R_i} = 0 \quad \Rightarrow \quad R_i = 0 \quad \text{with } R_i \text{ a parameter observed}$$

- The scaling law of vertical beam sizes at IP follows [1]

$$\sigma_y^{*2} = \mu^2 \epsilon_y \left(\beta_y^* + \frac{\Delta s^2}{\beta_y^*}\right) + \left(\eta_y^* \sigma_\delta\right)^2 + \epsilon_x \frac{\left(R_2^* + R_4^* \Delta s\right)^2}{\beta_x^*} + \epsilon_x \beta_x^* \left(R_1^* + \frac{\Delta s^2}{\beta_x^*}\right) + \epsilon_y \beta_x^* \left(R_1^*$$

 Δs is the deviation of vertical waist position. _

[1] Y. Ohnishi et al., The European Physical Journal Plus 136, 1023 (2021)

at IP.

 $R_3^*\Delta s$

	2021.07.01		Commonte	
	HER	LER	Comments	
I _{bunch} (mA)	0.80	1.0		
# bunch	1174		Assumed value	
ε _x (nm)	4.6	4.0	w/ IBS	
ε _γ (pm)	23	23	Estimated from XRM data	
β _x (mm)	60	80	Calculated from lattice	
β _y (mm)			Calculated from lattice	
σ _{z0} (mm)	5.05	4.84	Natural bunch length (w/o M	
Vx	45.532	44.525	Measured tune of pilot be	
Vy	43.582	46.593	Measured tune of pilot bu	
Vs	0.0272	0.0221	Calculated from lattice	
Crab waist	40%	80%	Lattice design	

a
WI)
WI) ch
WI) ch ch
WI) ch ch

IP R3 scan

- Simulations were done using simple one-turn matrix.
- σ_v^* shrinks due to weak beam-beam force.
- HER σ_v^* blowup at LER IP R3=0 is mainly due to insufficient crab waist strength in HER (40%).

$$\sigma_y^{*2} = \mu^2 \epsilon_y \left(\beta_y^* + \frac{\Delta s^2}{\beta_y^*} \right) + \left(\eta_y^* \sigma_\delta \right)^2 + \epsilon_x \frac{\left(\eta_y^* - \beta_y^* - \beta_y^* \right)}{\left(\eta_y^* - \beta_y^* - \beta_y^* - \beta_y^* \right)} + \left(\eta_y^* - \beta_y^* - \beta_y^* - \beta_y^* - \beta_y^* \right) + \left(\eta_y^* - \beta_y^* - \beta_y^* - \beta_y^* - \beta_y^* \right) + \left(\eta_y^* - \beta_y^* - \beta_y^* - \beta_y^* - \beta_y^* - \beta_y^* \right) + \left(\eta_y^* - \beta_y^* - \beta_y^* - \beta_y^* - \beta_y^* - \beta_y^* - \beta_y^* \right) + \left(\eta_y^* - \beta_y^* \right) + \left(\eta_y^* - \beta_y^* - \beta_$$

In this scan, nonzero LER IP R3 can increase luminosity (Double peaks in the luminosity scan). This is because HER

• IP R3 scan

- Knobs with beam showed luminosity is not sensitive to IP R3 in the range of (-1,1) m⁻¹. -
- Belle2 background was sensitive to IP R3 knobs.
- Correlation of σ_v^* vs. R_3^* (LER) looked to be stable during 2021c run.

November, 2021

December, 2021

• IP R3 scan

- Knobs with beam showed luminosity is not sensitive to IP R3 in the range of (-1,1) m⁻¹. ----
- Belle2 background was sensitive to IP R3 knobs.
- Correlation of σ_y^* vs. R_3^* (HER) looked to be complicated during 2021c run.

IP R4 scan

- Simulations were done using simple one-turn matrix.
- σ_v^* shrinks due to weak beam-beam force.
- HER σ_v^* blowup at LER IP R4=0 is mainly due to insufficient crab waist strength in HER (40%).
- The sensitivity of

F LER
$$\sigma_y^*$$
 against R4 is scaled by ϵ_x / β_x^* with $\beta_x^* \ll 1$ m.

$$\sigma_y^{*2} = \mu^2 \epsilon_y \left(\beta_y^* + \frac{\Delta s^2}{\beta_y^*} \right) + \left(\eta_y^* \sigma_\delta \right)^2 + \epsilon_x \frac{\left(R_2^* + R_4^* \Delta s \right)^2}{\beta_x^*} + \epsilon_x \beta_x^* \left(R_1^* + R_3^* \Delta s \right)^2$$

In this scan, nonzero LER IP R4 can increase luminosity (Double peaks in the luminosity scan). This is because HER

- IP R4 scan
 - Only one IP R4 scan during 2021c run (from SKB log system)

• BBSS simulations: Scan LER ν_{χ} (with LER ν_{y} and HER $\nu_{\chi,y}$ are fixed, same as the parameter table of 2021.12.21)

	2021.12.21		Comments	
	HER	LER	Comments	
I _{bunch} (mA)	le	I.25*le		
# bunch	393		Assumed value	
ε _x (nm)	4.6	4.0	w/ IBS	
ε _y (pm)	20	35	Estimated from XRM data	
β _x (mm)	60	80	Calculated from lattice	
β _y (mm)			Calculated from lattice	
σ _{z0} (mm)	5.05	4.60	Natural bunch length (w/o MWI)	
Vx	45.53	44.524	Measured tune of pilot bunch	
Vy	43.572	46.589	Measured tune of pilot bunch	
Vs	0.0272	0.0233	Calculated from lattice	
Crab waist	40%	80%	Lattice design	

- BBSS simulations: Scan LER ν_x (with LER ν_y and HER $\nu_{x,y}$ are fixed, same as the parameter table
 - Responses of LER and HER beam sizes to LER ν_x are complicated

10

- Dec. 21-22, 2021: Beam-beam study overview
 - The beam-beam machine study was very successful with several important findings.
 - LER horizontal ϵ_x blowup was verified: It is driven by beam-beam and sensitive to LER ν_x . It is not simply coherent BBHTI. It can be a phenomenon of beambeam driven synchro-betatron resonance with inclusion of longitudinal impedance effect.
 - Operating LER on top of and even left side of $\nu_x \nu_{s0} = N/2$ (here ν_x is measured gated tune of pilot bunch, ν_{s0} is the nominal synchrotron tune): LER ϵ_x blowup can be relaxed and LER injection efficiency can be improved.
 - Optimization of working point (with chromatic coupling correction in LER) helped achieve a balanced collision and contributed to new luminosity record.

- - at $I_{\perp}/I_{\perp} = 440/352$ mA with LER ν_{x} set by -0.003.

12

13

- Dec. 21-22, 2021: HBCC study \bullet
 - Compare HBCC study of Jul. 01 and Dec. 21: Specific luminosity is similar.
 - Current ratio scan showed better specific luminosity can be achieved.
 - With optimized working point and fine IP tuning knobs, slightly better luminosity performance can be achieved.
 - The discrepancy between simulated and observed luminosity became large when bunch currents increase. —
 - Bunch lengthening is still an unclear factor. Efforts are ongoing to improve impedance model for simulations in order to reduce the discrepancy between simulations and measurements of bunch length and beam phase.

	2021.12.21		Comments	
	HER	LER	Comments	
I _{bunch} (mA)	le	I.25*le		
# bunch	393		Assumed value	
ε _x (nm)	4.6	4.0	w/ IBS	
ε _y (pm)	20	35	Estimated from XRM da	
β _x (mm)	60	80	Calculated from lattice	
β _y (mm)		I	Calculated from lattice	
σ _{z0} (mm)	5.05	4.60	Natural bunch length (w/o N	
Vx	45.53	44.524	Measured tune of pilot bu	
Vy	43.572	46.589	Measured tune of pilot bu	
Vs	0.0272	0.0233	Calculated from lattice	
Crab waist	40%	80%	Lattice design	

Operation parameter set for BBSS simulation

- Dec. 21-22, 2021: HBCC study
 - LER σ_x^* blowup was partially mitigated by reducing LER ν_x .
 - It was hard to achieve balanced collision ($\sigma_{y+}^* \approx \sigma_{y-}^*$) when $I_{b+}I_{b-} > 0.45$ mA².
 - When bunch current ratio is fixed with $I_{b+}/I_{b-}=1.25$, a "flip-flop" ⁶¹⁸ phenomenon appeared: At lower bunch currents, HER beam seems¹⁶ to be weaker; At higher bunch currents, LER beam is weaker (blowup due to head-tail instability? See Ohmi-san's talk). But balanced collision could be achieved by tune optimization and IP knob tunings at low bunch currents.

- Dec. 21-22, 2021: HBCC current-ratio study
 - When the LER beam current is fixed at 440 mA (393 bunches), the optimum current ratio ("optimum" means maximum Lsp with $\sigma_{v+}^* \approx \sigma_{v-}^*$) was found at $I_{b+}/I_{b-} \approx 1.7$, close to the energy transparency condition $I_{b+}/I_{b-} = \gamma_{-}/\gamma_{+}.$

- Dec. 21-22, 2021: HBCC tune-survey study
 - Tune survey was done with fixed beam current $I_{\perp}/I_{=}$ =440/352 mA (393) bunches).
 - With I_{b+} >1 mA, sideband of LER ν_v (-1 mode) was always seen.
 - Changing HER ν_v from 43.582 to upper side cause HER vertical blowup and luminosity loss, down side is better. HER ν_{v} was set at 43.572.
 - Changing LER ν_{y} toward 46.57 did not show improvement in luminosity (even worse with LER vertical blowup).

Tune survey for rotation sextupole study on Dec. 20-21, 2021

- Rotation sextupole study by M. Masuzawa, Y. Ohnishi, et al. \bullet
 - Tune survey showed chromatic resonances $\nu_x \nu_y + k\nu_s = N$ were suppressed by rotation sextupole tuning

Summary

- **Beam-beam simulations**
 - strength.
 - (beam energies, tunes, emittances, beta functions, etc.).
- Beam-beam machine study
 - increase.
 - blowup.
 - collision.

LER R3 and R4 scans showed "double-peak" correlation of luminosity, which is associated with HER σ_v^* blowup at 40% crab waist

 ν_{x} scans showed complicated correlation of beam sizes with LER ν_{x} . It is associated with the asymmetries of the LER and HER beams

Luminosity performance is much lower than prediction of beam-beam simulations. The discrepancy became larger as bunch currents

Horizontal emittance blowup driven by beam-beam was verified, and is sensitive to ν_x . LER horizontal blowup was correlated with LER injection efficiency. So far, machine study did not show clear evidence of vertical blowup and luminosity loss caused by horizontal

Optimization of working point was useful in: 1) alleviation of LER horizontal blowup; 2) better balance of vertical beam sizes with

Backup

Scaling laws of luminosity

- Beam-beam parameter (tune shift)
 - Under balanced collision ($\sigma_{y+}^* \approx \sigma_{y-}^*$), the two methods for beam-beam parameter (tune shift) are almost equivalent.
 - values of ~0.09 (w/o crab waist). This is the most important challenge at SuperKEKB.

The currently achieved beam-beam parameters are $\xi_{v+}pprox 0.04$ and $\xi_{v-}pprox 0.03$ (w/ crab waist), which are much lower than the design

Scaling laws of luminosity

- Specific luminosity lacksquare
 - Observed specific luminosity L_{sp} can be used for discussion of reaching 1E35 luminosity at SuperKEKB.
 - The best scenario is: L_{sp} is a constant. It means there are no beam-size blowup.
 - But in the realistic machine, L_{sp} drops when bunch currents increase due to "collective effects".

Courtesy of Y. Ohnishi

Outlook of reaching 1E35 luminosity

- Scenario-1: Constant beam-beam parameter
 - observation based on experiences from colliders.
 - find the necessary beam currents to achieve 1E35 luminosity. The results are summarized in the table.
 - Note that we achieved 3.815E34 luminosity wit $\beta_v^*=1$ mm (Dec. 23, 2021).

β _y (mm)	3.5E+34		6E+34		1E+3	
	HER	LER	HER	LER	HER	
1	0.77	1.01	I.32	I.73	2.20	
0.8	0.61	0.81	1.05	1.38	1.76	
0.6	0.46	0.61	0.79	1.04	1.32	
0.4	0.31	0.4	0.53	0.69	0.88	
0.3	0.23	0.3	0.40	0.52	0.66	

When the machine hits a "beam-beam limit", the beam-beam parameter will saturate and cannot increase furthers. This is an empirical

Let us tentatively accept $\xi_{v+} pprox 0.04$ and $\xi_{v-} pprox 0.03$ which are taken from the current SuperKEKB observation. Then we can simply

24

Outlook of reaching 1E35 luminosity

- Scenario-2: Given specific luminosity slope
 - From the observed specific luminosity slope (see page.13), we can estimate the total luminosity with given beam currents.
 - We can assume $L_{sp}[10^{31} \text{ cm}^{-2}\text{s}^{-1}/\text{mA}^2] = 8.8 5.8I_{b+}I_{b-}[\text{mA}^2]$. Note that this scaling law is only valid for for $\beta_y^*=1$ mm.
 - Also I assume bunch current ratio of $I_{b-}/I_{b+} = 0.8$ which is currently used at SuperEKKB. The possible bunch current products and number of bunches are listed in the table and resulting luminosity [scaled by 1E35].
 - Squeezing β_v^* is effective to increase L_{sp} , but has many other side effects (not discussed here).

Pupph pupphor	I _{b+} I _{b-} [mA ²]				
Bunch number	0.5	0.7	1		
1270	0.41	0.49	0.53		
1370	0.44	0.53	0.57		
1565	0.51	0.61	0.6		
2000	0.65	0.78	0.83		
2500	0.81	0.97	1.04		

