CW beam physics analysis

- Demin Zhou dmzhou@post.kek.jp
- With materials from K. Ohmi, Y. Ohnishi, A. V. Bogomyagkov, K. Oide, and M. Zobov
 - Acknowledgements
 - J. Gao, E. Levichev, and members of SuperKEKB team

Mini-workshop on Accelerator Physics: Key Beam Physics and Technologies Issues for Colliders Jan. 13, 2022, HKUST IAS

Outline

- Ideal crab waist
- Crab waist applied to SuperKEKB
- Crab waist optics design for Super Charm Tau factory
- Summary

Status of SuperKEKB

- Collision scheme (KEKB \rightarrow SuperKEKB)
 - SuperKEKB: A "green" collider

	KEKB (2009.06.17)		SKEKB (2021.12.23)		SKEKB (Final design)		
	HER	LER	HER	LER	HER	LER	
I _{beam} (A)	I.2	1.0	0.8	1.02	2.6	3.6	
# bunch	15	85	1370		2500		
ε _x (nm)	24	18	4.6	4.0	4.6	3.2	
ε _y (pm)	150	150	~50	~50	12.9	8.64	
β _x (mm)	1200	1200	60	80	25	32	
β _y (mm)	5.9	5.9	I	I	0.3	0.27	
σ _z (mm)	6	6	5	6	5	6	
Vx	44.511	45.506	45.53	44.524	45.53	44.53	
Vy	41.585	43.561	43.52	46.589	43.57	46.57	
Vs	0.0209	0.0246	0.0272	0.0233	0.028	0.0245	
Crab waist	-		40%	80%		-	
Crossing angle (mrad)	0 (22)		83		83		
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	2.1		3.81		80		

Schematic view of collision schemes

- region of colliding beams
 - beam-beam resonances)

Ref.[1] P. Raimondi, 2nd SuperB Workshop, March 2006 Ref.[2] M. Zobov, EIC Workshop, Oct. 8, 2020.

- Ideal crab waist requires a transparent interaction region \bullet
 - Linear transfer map with perfect phase advance between the CW sextupole and anti-sextupole. ullet

Beam-beam resonances

- X-Y resonances can be well suppressed by ideal crab waist.
- Note that X-Z synchro-betatron resonances cannot be fully suppressed by crab waist when $\Phi \gg 1$. lacksquare

Ref.[2] D. Shatilov et al., PRST-AB 14, 014001 (2011).

- SuperKEKB final design ($\beta_v^* = 0.3/0.27$ mm) with ideal crab waist
 - Crab waist creates large area in tune space for choice of working point

- SuperKEKB final design ($\beta_v^* = 0.3/0.27$ mm) with ideal crab waist
 - Beam-beam driven halo can be suppressed ullet

SAD +weak-strong BB

- SuperKEKB 2021b run ($\beta_v^* = 1$ mm) with ideal crab waist
 - Tune scan using BBWS showed that 80% crab waist ratio in LER is effective in suppressing vertical blowup caused by beam-beam resonances (mainly $\nu_x \pm 4\nu_y + \alpha = N$).

	2021.07.01		Commonto
	HER	LER	Comments
I _{bunch} (mA)	0.80	1.0	
# bunch	117	′ 4	Assumed value
ε _x (nm)	4.6	4.0	w/ IBS
ε _y (pm)	23	23	Estimated from XRM data
β _x (mm)	60	80	Calculated from lattice
β _y (mm)		I	Calculated from lattice
σ _{z0} (mm)	5.05	4.84	Natural bunch length (w/o MWI)
Vx	45.532	44.525	Measured tune of pilot bunch
Vy	43.582	46.593	Measured tune of pilot bunch
Vs	0.0272	0.0221	Calculated from lattice
Crab waist	40%	80%	Lattice design

- SuperKEKB 2021b run ($\beta_v^* = 1 \text{ mm}$) with ideal crab waist
 - Tune scan using BBWS showed that 40% crab waist ratio (current operation condition) in HER might not be enough for suppressing vertical blowup caused by beam-beam resonances (mainly $\nu_x \pm 4\nu_v + \alpha = N$).

- SuperKEKB final design ($\beta_v^* = 0.3/0.27$ mm) with practical crab waist
 - CW scheme with CW sextupoles outside IR \bullet
 - CW reduces dynamic aperture and Touschek lifetime, and was not chosen as baseline for TDR \bullet

Figure 4.28: Dynamic aperture in the LER crab-waist lattice without beam-beam effect. Initial ratio of the vertical to the horizontal amplitude is 0.27 %. (a) $K_2 = 0$ $[1/m^2]$, (b) K₂ = 11 $[1/m^2]$.

Ref.[3] SuperKEKB TDR.

- SuperKEKB final design ($\beta_v^* = 0.3/0.27$ mm) with practical crab waist
 - CW does not work well because of the nonlinear IR. The nonlinearity scales as $1/\beta_v^*$. \bullet
 - SuperKEKB design lattice include nonlinear fields extracted from 3D model \bullet QCS-R Cryostat

- 4 SC main quadrupole magnets: 1 collared magnet, 3 yoked magnets
- 16 SC correctors: a1, b1, a2, b4
- 4 SC leak field cancel magnets: b3, b4, b5, b6 1 compensation solenoid

- 4 SC main quadrupole magnets: 1 collared magnet, 3 yoked magnets 19 SC correctors: a1, b1, a2, a3, b3, b4
- 4 SC leak field cancel magnets: b3, b4, b5, b6
- 3 compensation solenoid

Ref.[4] K. Ohmi, EIC workshop, March, 2014.

- Optics design with crab waist for $\beta_v^* = 1 \text{ mm}$
 - In 2020, K. Oide introduced the FCC-ee CW scheme to SuperKEKB. \bullet
 - FCC-ee CW scheme utilizes the sextupoles (a-d) for local chromaticity correction and crab waist. \bullet

Ref.[6] K. Oide et al., PRAB 19, 111005 (2016).

Ref.[7] Y. Ohnishi, SuperKEKB ARC 2020.

- SuperKEKB beam operation with crab waist for $\beta_v^* = 1 \text{ mm}$
 - Operation with CW has been successful.

Ref.[8] Y. Ohnishi, The European Physical Journal Plus volume 136, 1023 (2021).

- SuperKEKB beam operation with crab waist for $\beta_v^* = 1 \text{ mm}$
 - -

 - Sources of luminosity degradation at high bunch currents are to be investigated. -

	2021.12.21		Commonto	
	HER	LER	Comments	
I _{bunch} (mA)	le	I.25*le		
# bunch	393	3	Assumed value	
ε _x (nm)	4.6	4.0	w/ IBS	
ε _y (pm)	20	35	Estimated from XRM data	
β _x (mm)	60	80	Calculated from lattice	
β _y (mm)			Calculated from lattice	
σ _{z0} (mm)	5.05	4.60	Natural bunch length (w/o M	
Vx	45.532	44.525	Measured tune of pilot bun	
Vy	43.582	46.593	Measured tune of pilot bun	
Vs	0.0272	0.0233	Calculated from lattice	
Crab waist	40%	80%	Lattice design	

Operation parameter set for BBSS simulation

The discrepancy between simulated and observed luminosity became large when bunch currents increase. With optimized working point and fine IP tuning knobs, slightly better luminosity performance can be achieved.

• Optics design with crab waist for $\beta_v^* = 0.6$ mm by K. Oide

Aug. 27, 2021 K. Oide

Ref.[9] K. Oide, SuperKEKB ARC, 2021.

- Optics design with crab waist for $\beta_v^* = 0.6$ mm by K. Oide
 - With 50% CW strength, lifetime is acceptable for beam operation

Ref.[9] K. Oide, SuperKEKB ARC, 2021.

Crab waist optics design for Super Charm Tau Factory

• The Super Charm Tau Factory under design utilizes CW as baseline

Design parameters

E(MeV)	1500	2000	2500	3000	3500
Π (m)			632.94		
F _{RF} (MHz)			350		
2θ (mrad)			60	porKEKP 02 12	$2010 R^* - 1 mm$
$\varepsilon_y/\varepsilon_x(\%)$			0.5	perkekb 05.12	$2019 p_y - 1 mm$
β_x^*/β_y^* (mm)			100/1		
I(A)	2	2	2	2	2
$N_{e/bunch} \times 10^{-10}$	9	9	8	9 PEPII:	l(e+)=3.2 A PEPII
N _b	292	292	328	29 DAFN	E : I(e-)=2.45A
U ₀ (keV)	130	260	465	773	1220
<i>V_{RF}</i> (k V)	1600	2000	2500	3500	5000
ν_s	0.0164	0.0159	0.0158	0.017	0.019
δ _{RF} (%)	1.9	1.8	1.7	1.7	1.9
$\sigma_e \times 10^3$ (SR/IBS+WG)	0.28/1	0.4/1.1	0.5/1.1	0.6/1.1	0.7/1.1
σ_s (mm) (SR/IBS+WG)	4/15	7/15	7/15	SuperKEKE	$2 \cdot I = 3.8 \times 10^{34}$
$\varepsilon_x(nm)$ (SR/IBS+WG)	2.7/8.8	5/5.5	7/4.6		$5. L = 3.0 \times 10$
$L_{HG} \times 10^{-35} (cm^{-2}s^{-1})$	0.8	1	1	1	1
ξ_x/ξ_y	0.007/0.15	0.005/0.14	0.003/0.1	0.003/0.09	0.004/0.08

From A. V. Bogomyagkov

Wiggler at E=1.5 GeV $\tau_x = 0.3 \ s \rightarrow 0.05 \ s$

K.Oide FCC-ee

Crab waist optics design for Super Charm Tau Factory

6d-DA, turns=4096, $y_0 = \sigma_y$

	CRAB=0%	CRAB=25%	CRAB=50%	CRAB=100%
N _{part}	9×10 ¹⁰	9×10 ¹⁰	9×10 ¹⁰	9×10 ¹⁰
$ au_{Touschek}(s)$	265	155	80	39

CRAB sextupole influence on 6d DA, E=1.5 GeV

6d-DA, $y_0 = \sigma_y, \sigma_x = 4.72e - 04, \sigma_\delta = 1.12e - 03$

Crab waist optics design for Super Charm Tau Factory New Interaction region + CCSX + CRAB (classical)

Crab waist optics design for Super Charm Tau Factory CRAB sextupole influence: 6d-DA $_{6d-DA, y_0 = \sigma_y = 1.77e - 05m}$

From A. V. Bogomyagkov

Crab waist optics design for Super Charm Tau Factory Breaking the rules interaction region

CRAB: $\mu_x = \pi, \beta_x = 1.23 m$ $\mu_y = 1.5\pi, \beta_v = 750 m K^2_{crab} = -31.72 m^{-2}$

Crab waist optics design for Super Charm Tau Factory CRAB sextupole influence on 6d DA, E=1.5 GeV

6d-DA: 2021.12.21-08.21.09_1.0crab_sextupole_chrom-3.str, $y_0 = \sigma_y =$

	CRAB=0%	CRAB=60%
N _{part}	9×10 ¹⁰	9×10 ¹⁰
$\tau_{Touschek}(s)$	450	126

6d-DA, $y_0 = \sigma_y, \sigma_x = 4.28e - 04m, \sigma_e = 1.08e - 03$

From A. V. Bogomyagkov

Summary

- Crab waist is powerful in suppression of nonlinear beam-beam effects
- lifetime
- SuperKEKB and SCTF share similar challenges in optics optimization with crab waist
- International collaborations are welcome!

• The nonlinear IR breaks the crab waist transformation, resulting in loss of dynamic aperture and

Backup

Beam-beam: simulations vs observations

- Dec. 21-22, 2021: HBCC study
 - LER σ_r^* blowup was partially mitigated by reducing LER ν_r .
 - It was hard to achieve balanced collision ($\sigma_{v+}^* \approx \sigma_{v-}^*$) when

 $I_{b+}I_{b-} > 0.45 \text{ mA}^2.$

- When bunch current ratio is fixed with $I_{b+}/I_{b-}=1.25$, a "flipflop" phenomenon appeared: At lower bunch currents, HER beam seems to be weaker; At higher bunch currents, LER beam is weaker. But balanced collision could be achieved by tune optimization and IP knob tunings at low bunch currents.

Beam-beam: simulations vs observations

- Dec. 21-22, 2021: HBCC current-ratio study
 - When the LER beam current is fixed at 440 mA (393 bunches), the optimum current ratio ("optimum" means maximum Lsp with $\sigma_{v+}^* \approx \sigma_{v-}^*$) was found at $I_{b+}/I_{b-} \approx 1.7$, close to the energy transparency condition $I_{b+}/I_{b-} = \gamma_{-}/\gamma_{+}.$

Discussion on candidates for vertical emittance blowup

• LER

- Beam-beam driven synchro-betatron resonance (it means single-beam effect, not BBHTI or X-Z instability which means coherent blowup of both beams. Potential-well distortion cause ν_s spread and increase width of $2\nu_x k\nu_s = N$ resonances.).
- "TMCI": Interplay of beam-beam, impedance and lattice nonlinearity.
- Imperfect CW (imperfect phase-advance between SLY* magnets, non-perfect CW for off-momentum particles)
- Others?

Discussion on candidates for vertical emittance blowup

• HER

- Chromatic coupling ($\nu_x \nu_y + \nu_s = N$ and $\nu_x - \nu_y + 2\nu_s = N$)
- $3\nu_x \nu_y = N?$
- Insufficient CW (now 40%, limited by SLY* strengths).
- Imperfect CW (imperfect phase-advance between SLY* magnets, non-perfect CW for off-momentum particles)
- Others?

Scaling laws of luminosity

- Beam-beam parameter (tune shift)
 - Under balanced collision ($\sigma_{y+}^* \approx \sigma_{y-}^*$), the two methods for beam-beam parameter (tune shift) are almost equivalent.
 - values of ~0.09 (w/o crab waist). This is the most important challenge at SuperKEKB.

The currently achieved beam-beam parameters are $\xi_{v+}pprox 0.04$ and $\xi_{v-}pprox 0.03$ (w/ crab waist), which are much lower than the design

Scaling laws of luminosity

- Specific luminosity
 - Specific luminosity L_{sp} is "the last piece of the puzzle" for discussion of reaching 1E35 luminosity at SuperKEKB.
 - The best scenario is: L_{sp} is a constant. It means there are no beam-size blowup.
 - But in the realistic machine, L_{sp} drops when bunch currents increase due to "collective effects".

Outlook of reaching 1E35 luminosity

- Scenario-1: Constant beam-beam parameter
 - observation based on experiences from colliders.
 - find the necessary beam currents to achieve 1E35 luminosity. The results are summarized in the table.
 - Note that we achieved 3.815E34 luminosity wit $\beta_v^*=1$ mm (Dec. 23, 2021).

β _y (mm)	3.5E+34		6E-	1E+3		
	HER	LER	HER	LER	HER	
1	0.77	1.01	I.32	I.73	2.20	
0.8	0.61	0.81	1.05	1.38	1.76	
0.6	0.46	0.61	0.79	1.04	1.32	
0.4	0.31	0.4	0.53	0.69	0.88	
0.3	0.23	0.3	0.40	0.52	0.66	

When the machine hits a "beam-beam limit", the beam-beam parameter will saturate and cannot increase furthers. This is an empirical

Let us tentatively accept $\xi_{v+} pprox 0.04$ and $\xi_{v-} pprox 0.03$ which are taken from the current SuperKEKB observation. Then we can simply

Outlook of reaching 1E35 luminosity

- Scenario-2: Given specific luminosity slope
 - From the observed specific luminosity slope (see page.13), we can estimate the total luminosity with given beam currents.
 - We can assume $L_{sp}[10^{31} \text{ cm}^{-2}\text{s}^{-1}/\text{mA}^2] = 8.8 5.8I_{b+}I_{b-}[\text{mA}^2]$. Note that this scaling law is only valid for for $\beta_y^*=1$ mm.
 - Also I assume bunch current ratio of $I_{b-}/I_{b+} = 0.8$ which is currently used at SuperEKKB. The possible bunch current products and number of bunches are listed in the table and resulting luminosity [scaled by 1E35].
 - Squeezing β_v^* is effective to increase L_{sp} , but has many other side effects (not discussed here).

Pupph pupphor	l _{b+} l _{b-} [mA ²]				
Bunch number	0.5	0.7	1		
1270	0.41	0.49	0.53		
1370	0.44	0.53	0.57		
1565	0.51	0.61	0.6		
2000	0.65	0.78	0.83		
2500	0.81	0.97	1.04		

