Updates on beam-beam simulations and recent machine status related to beam-beam

Demin Zhou

Accelerator theory group, Accelerator laboratory, KEK

Acknowledgements

Y. Funakoshi, T. Ishibashi, K. Ohmi, Y. Ohnishi, S. Terui, Y. Zhang, and SuperKEKB commissioning group

4th meeting of beam-beam workgroup, Nov. 25, 2021, KEK

Outline

- Updates on beam-beam simulations for SuperKEKB
 - BBSS ν_x scan with vertical fractional tune $[\nu_y] = .61$.
 - BBWS tune scan
 - Benchmark of beam-beam simulations
- Recent machine status related to beam-beam
- Summary

- Tune scan with longitudinal pseudo-Green function wakes
 - Beam parameters similar to observations on 2021.07.01.

	2021.07.01		Commonto
	HER	LER	Comments
Ibunch (mA)	0.80	1.0	
# bunch	1174		Assumed value
ε _x (nm)	4.6	4.0	w/ IBS
ε _y (pm)	23	23	Estimated from XRM data
β _x (mm)	60	80	Calculated from lattice
β _y (mm)			Calculated from lattice
σ _{z0} (mm)	5.05	4.84	Natural bunch length (w/o MWI)
Vx	45.532	44.525	Measured tune of pilot bunch
Vy	43.582	46.593	Measured tune of pilot bunch
Vs	0.0272	0.0221	Calculated from lattice
Crab waist	40%	80%	Lattice design

nction wakes 7.01.

- Tune scan using BBSS with longitudinal pseudo-Green function wakes
 - Assume equal ν_x for HER and LER. Fractional vertical tune set as $\nu_v = .57/.61$, scan ν_x . Track 2e6 macro particles to 12000 turns.
 - Plots: Luminosity and beam sizes (the data at the last turn) as a function of ν_{γ} .
 - Data for $0.513 < \nu_{\chi} < 0.526$ do not arrive at equilibrium.
 - For $\nu_v = .61$, luminosity decreases when horizontal tune moves from $\nu_{\chi} = 0.61$ to $\nu_x = 0.54$. This is caused by vertical blowup of HER beam, and should be related to beambeam resonance of $-\nu_x + 4\nu_y + \alpha = N$ with insufficient HER crab waist strength (40%) (see p.10 for BBWS tune scan).

- Tune scan with longitudinal pseudo-Green function wakes (cont'd)
 - Tune scan with $\nu_y = 0.61$ finished. It reproduces the resonances seen in the tune scan with $\nu_y = 0.57$ on the left of

 $\nu_x - 2\nu_s = N/2.$

New results

- Tune scan with longitudinal pseudo-Green function wakes (cont'd)
 - Vertical blowup of HER beam with $\nu_v = 0.61$ should be related to $\nu_x + 4\nu_y + \alpha = N$ with insufficient HER crab waist strength (40%).
 - "In collision schemes with $\phi >> 1$, an increase in *ɛx* itself does not have a noticeable impact on luminosity. However, this leads to a proportional increase in εy due to the betatron coupling, so eventually the luminosity will decrease several times." [2]

- Tune scan using BBWS without longitudinal wakes
 - Luminosity with weak positron beam (LER): Beam-beam resonances of $\nu_x \pm 4\nu_y + \alpha = N$ are well suppressed by crab waist (80%).

- Tune scan using BBWS without longitudinal wakes
 - $\nu_x \pm 4\nu_v + \alpha = N$ are well suppressed by crab waist (80%).

- Vertical beam size (normalized by nominal value) with weak positron beam (LER): Beam-beam resonances of

- Tune scan using BBWS without longitudinal wakes
 - Luminosity with weak electron beam (HER): Beam-beam resonances of $\nu_x \pm 4\nu_y + \alpha = N$ are well suppressed by crab waist (80%).

- Tune scan using BBWS without longitudinal wakes
 - $\nu_x \pm 4\nu_v + \alpha = N$ are well suppressed by crab waist (80%).

- Vertical beam size (normalized by nominal value) with weak electron beam (HER): Beam-beam resonances of

- Tune scan using BBWS without longitudinal wakes
 - However, 40% of crab waist strength is not enough to suppress the beam-beam resonances of $\nu_x \pm 4\nu_v + \alpha = N$ for electron beam (HER).

- **Benchmark simulations** \bullet
 - In the 3rd ITF-BB workgroup meeting, Y. Zhang showed ---simulation results of coherent X-Z instability using his IBB code.
 - The horizontal blowup simulated by IBB and BBSS showed different patterns. IBB simulations were done with rms $\sigma_{x,y}$.
 - BBSS simulations using rms $\sigma_{x,y}$ were done, reproducing the pattern of BBSS simulations.
 - To better understand the discrepancy, we plan: -
 - To check the impedance modeling of BBSS (BBSS predicts) bunch lengthening weaker than VFP simulations).
 - To compare turn-by-turn data of BBSS and IBB.

Qx

- One day history of luminosity and emittances \bullet
 - Stable operation with balanced collision ($\sigma_{y+}^* \approx \sigma_{y-}^*$) was achieved.
 - The vertical emittance blowup ratio ($\epsilon_y/\epsilon_{y0} \approx 2.5$) is still much higher than beam-beam simulations
 - From XRMs, there is visible current dependence of horizontal emittance blowup. Its relation with beam-beam effects is not confirmed yet.

	2021.11.20		Commonte
	HER	LER	Comments
I _{beam} (A)	0.64	0.8	
# bunch	1272		
ε _x (nm)	4.6	4.0	w/ IBS
ε _y (pm)	20	20	Single-beam w/o collision (XRM)
β _x (mm)	60	80	Calculated from lattice
β _y (mm)		Ι	Calculated from lattice
σ _{z0} (mm)	5.05	4.61	Natural bunch length (w/o MWI)
Vx	45.533	44.525	Measured tune of pilot bunch
Vy	43.581	46.595	Measured tune of pilot bunch
Vs	0.0272	0.0233	Calculated from lattice
Crab waist	40%	80%	Lattice design
Luminosity	2.4		10 ³⁴ cm ⁻² s ⁻¹ (Measured)

• LER TMCI study done on Oct. 26, 2021

- A TMCI study in LER was done on Oct. 26, 2021.
- More details about the study can be found from later reports by Ishibashi-san (for example, see Ref. [1]).
- Post analysis of the experimental data showed clear emittance blowup caused by chromatic couplings of $\nu_x \nu_y + \nu_s =$ Integer and $\nu_x \nu_y + 2\nu_s =$ Integer. Synchrotron tune ν_s depends on bunch current because of potential-well distortion caused by longitudinal coupling impedance. So data analysis needs to take into account this factor.
- This study showed a possible interplay between localized transverse impedance from collimators and machine imperfections (including linear coupling and chromatic couplings) (See Ohmi-san's report Ref. [2] and this talk in this meeting).

Blue dots: ν_y scan with $\nu_x = 44.535$ and $I_{bunch} = 0.91$ mA Red dots: ν_y scan with $\nu_x = 44.535$ and $I_{bunch} = 0.31$ mA Green dots: ν_y scan with $\nu_x = 44.527$ and $I_{bunch} = 0.31$ mA Black dots: ν_y scan with $\nu_x = 44.527$ and $I_{bunch} = 0.91$ mA

[1] <u>https://kds.kek.jp/event/39972/contributions/199971/attachments/149042/186732/2021c_tmci_study_report.pptx</u>
[2] <u>https://kds.kek.jp/event/39972/contributions/200040/attachments/149061/186596/SBR_ChromCoup_Wake.pdf</u>

HER tune survey done on Nov. 8, 2021

- The study was done with LER trouble with injection kickers. So the beam time of HER was available for such study.
- More details about the study can be found from shift report (2021_11_08_0900_Ueda_Funakoshi).
- Post analysis of the experimental data showed clear emittance blowup caused by chromatic couplings of $\nu_x - \nu_y + \nu_s =$ Integer and $\nu_x - \nu_y + 2\nu_s =$ Integer. Because bunch current was very low in this study, the synchrotron tune ν_s can be taken as the zero-current ν_s calculated from design lattice.
- This study showed, during physics run, the global emittance coupling of the rings might change with time.
- Because HER is operating below the second chromatic coupling resonance $\nu_x - \nu_y + 2\nu_s =$ Integer, the footprint of the beam (with collective effects from impedance and beam-beam) will overlap this line and side effects should be seen.

HER tune scan (vertical) before optics correction knob on

HER tune scan (vertical) after optics correction knob off

From Y. Funakoshi's report

• HER tune survey done on Nov. 8, 2021

- The measured tune-dependent emittances were compared with simulations using ideal lattice (without machine errors) by Funakoshisan.
- The peak positions of chromatic couplings had good agreement.
- But, off from the resonances, the measured emittances were much higher than simulations. It indicated the global emittance coupling is important.
- Also, both simulations and measurements showed the existence of $3\nu_x - \nu_y = N$ resonance (to be confirmed).

Blue dots: ν_v scan before optics correction Red dots: ν_v scan after optics correction

From Y. Funakoshi's report Simulation on synchro-beta emittance (HER)

- HER single-beam study done on Nov. 14, 2021
 - In HER, we observe abnormal vertical emittance blowup.
 - It can be explained by overlap of beam's tune footprint with chromatic coupling resonance $\nu_x - \nu_y + 2\nu_s = N$ resonance.

• HER single-beam study done on Nov. 14, 2021

- The study was done with LER trouble with injection kickers. So the beam time of HER was available for such study.
- More details about the study can be found from shift report (2021_11_14_0900_Suetsugu_Sugimura.pptx) and study report presented by D.Zhou at the KCG meeting of Nov.15, 2021.
- Post analysis of the experimental data showed clear emittance blowup caused by the second chromatic coupling $\nu_x - \nu_y + 2\nu_s =$ Integer. Because HER's working point (fixed by tune feedback) is close to this resonance, when the bunch current was increased, the synchrotron tune ν_s will decrease. Consequently, the overlap of beam's tune footprint with $\nu_x - \nu_y + 2\nu_s =$ Integer caused emittance blowup.

- Proposal of tune survey for LER and HER
 - particle dynamics.
 - TMCI).
 - (coherent X-Z instability, beam-beam resonances, etc.) and its interplay with lattice nonlinearity and impedances.

Tune survey to observe single-beam emittance blowup at low bunch current should provide lots of information about nonlinear single

Tune survey to observe single-beam emittance blowup at high bunch current should provide information of impedance effects (such as

Tune survey to observe collision-beam emittance blowup at high bunch current should provide information of beam-beam effects

Summary

Beam-beam simulations

- 40% crab waist strength for HER seems not enough to suppress beam-beam resonances? -
- Impedance effects in BBSS and BBWS need to be improved. -

Recent machine status

- Machine conditions (many aspects) became more stable compared to 2021ab? ----
- Vertical blowup remains to be a big challenge for achieving higher luminosity. -

Interplay of beam-beam, lattice imperfections (global betatron coupling, chromatic couplings, synchro-beta resonances, high-order geometric resonances, etc.), and impedances looks to be a key issue and requires a better model for beam-beam simulations.

