Updates on beam-beam simulations for SuperKEKB

Accelerator theory group, Accelerator laboratory, KEK

Acknowledgements

2nd meeting of beam-beam workgroup, Sep. 28, 2021, KEK

Demin Zhou

- K. Ohmi, D. Shatilov, K. Oide,
- and SuperKEKB commissioning group

Old results

- Comparison of simulations with experiments
 - BBSS simulations were done to compare the experimental observations on Jul. 01, 2021 [1].
 - Luminosity: With inclusion of BBHTI in simulation, the slope of specific luminosity accidentally agreed with experiment.

	2021.07.01		Commente
	HER	LER	Comments
l⊨ (A)	le	l.255*le	
# bunch	393		
ε _× (nm)	4.6	4.0	w/ IBS
ε _v (pm)	18	18	Single beam (Estimated from XR
β _x (mm)	60	80	Calculated from lattice
β ₇ (mm)	I	I	Calculated from lattice
σ₂ (mm)	5.05	4.84	Natural bunch length (w/o M
Vx	45.532	44.525	Measured tune of pilot bund
Vy	43.582	46.593	Measured tune of pilot bund
Vs	0.0272	0.0221	Calculated from lattice
Crab waist	40%	80%	Lattice design

Luminosity history panel seen in SuperKEKB control room

Old results

- Comparison of simulations with experiments (cont'd) \bullet
 - Horizontal blowup: Simulations showed strong BBHTI but experiment only showed remarkable blowup in LER beam.
 - Vertical blowup: Simulations totally disagree with experiment.

[1] D. Zhou, Talk presented at the 1st meeting of SuperKEKB beam-beam workgroup, KEK, Aug. 24, 2021, https://kds.kek.jp/event/39142/.

- Simulations with longitudinal pseudo-Green function wakes
 - In the old simulations, I simply changed the bunch length in the input file of BBSS code. The bunch length was given by linear function $\sigma_{z}[mm] = \sigma_{z0}[mm] + A \cdot I_{bunch}[mA]$. A was determined by Vlasov solver using Pseudo-Green function wake. A = 1.07 for HER, and A = 0.83 [2].
 - In the new simulations, the Pseudo-Green function wakes were directly used. In BBSS code, the wakes are lumped at IP (1 wake kick per turn).
 - The luminosity loss caused by BBHTI disappeared, indicating strong effect of wake fields.
 - The bunch lengthening simulated by BBSS is weaker than Vlasov solver. Further investigation is necessary to understand the discrepancy.
 - In the old simulations, bunch lengthening of HER beam did not follow the given function. It might be due to BBHTI.
 - It might be necessary to take into account the dispersion effect (there are non-zero dispersion sections). This requires to distribute the wakes along the ring (multiple kicks perturb). The distributed wakes might affect the coupled synchrotron/betatron motion. [Suggested by K. Oide].

- Simulations with longitudinal pseudo-Green function wakes (cont'd)
 - With beam-beam and wake effects modeled self-consistently, the BBHTI disappeared.
 - But blowup of horizontal beam sizes is visible in simulations. _ Blowup in LER beam is stronger than that in HER beam.
 - Somehow simulations agree with experiment?
 - Horizontal blowup at low bunch currents is related to feature of X-ray monitor (see next page)?

- Simulations with longitudinal pseudo-Green function wakes (cont'd)
 - In experiment, horizontal blowup happened at quite low bunch current (pointed out by Y. Ohnishi). This was also observed in single-beam mode (both HER and LER), and might be related to feature of X-ray monitors (to be confirmed).

History of beam sizes in single-beam mode (HER)

- Simulations with longitudinal pseudo-Green function wakes (cont'd)
 - For vertical blowup, new simulations do not show big difference.
 - To predict the experiments, other sources are necessary to be included in beam-beam simulations.
 - Candidates sources: Transverse wakes, collision offset noise, IP _ aberrations (chromatic coupling, third-order RDTs, etc.) [3], and others?

- Tuen-scan with longitudinal pseudo-Green function wakes
 - Beam parameters similar to observations on 2021.07.01. ----
 - Assume equal ν_x for HER and LER. Fractional vertical tune set as $\nu_v = .57$, scan ν_x . Track 2e6 macro particles to 12000 turns.
 - Plots: Luminosity and beam sizes (the data at the last turn) as a function of ν_{χ} .
 - Data for $0.513 < \nu_x < 0.526$ do not arrive at equilibrium.

	2021.07.01		Commonte
	HER	LER	Comments
I _{bunch} (mA)	0.80	1.0	
# bunch	1174		Assumed value
ε _x (nm)	4.6	4.0	w/ IBS
ε _y (pm)	23	23	Estimated from XRM data
β _x (mm)	60	80	Calculated from lattice
β _y (mm)	Ι	I	Calculated from lattice
σ _{z0} (mm)	5.05	4.84	Natural bunch length (w/o MW
Vx	45.532	44.525	Measured tune of pilot bunch
Vy	43.582	46.593	Measured tune of pilot bunch
Vs	0.0272	0.0221	Calculated from lattice
Crab waist	40%	80%	Lattice design

Synchro-betatron resonances: $\nu_x - k\nu_s/2 = N/2$ Odd *k*: Dashed lines; Even *k*: Solid lines Orange lines: LER; Cyan lines: HER

12 10 Luminosity [10³⁴cm⁻²s⁻¹] 8 6 4 **BBSS** Lum. 0.5 0.53Fractional v_x 0.54 0.51 0.52 0.55 12 10 um. [10³⁴cm⁻²s⁻¹] 6 0 6000 Turn 10000 2000 4000 8000 12000 0

- wakes (cont'd)
 - tune shift caused by longitudinal wake?

 - beams seems to be asymmetric.

Synchro-betatron resonances: $\nu_x - k\nu_s/2 = N/2$ Odd *k*: Dashed lines; Even *k*: Solid lines Orange lines: LER; Cyan lines: HER

- wakes (cont'd)
 - and is related to BBHTI.
 - vertical blowup.

Synchro-betatron resonances: $\nu_x - k\nu_s/2 = N/2$ Odd *k*: Dashed lines; Even *k*: Solid lines Orange lines: LER; Cyan lines: HER

- wakes (cont'd)
 - and is related to BBHTI.

Synchro-betatron resonances: $\nu_x - k\nu_s/2 = N/2$ Odd k: Dashed lines; Even k: Solid lines Orange lines: LER; Cyan lines: HER

Summary

- Beam-beam simulations with longitudinal pseudo-Green function wakes for fixed working point: HER $(\nu_x, \nu_y) = (0.532, 0.582)$, LER $(\nu_x, \nu_y) = (0.525, 0.593)$
 - Using the beam parameters observed on 2021.07.01, BBSS simulations were updated with wakes _ included in a self-consistent treatment.
 - The BBHTI disappeared when wakes were included.
 - Weak horizontal blowup were seen in simulations when wakes were included.
 - New simulations still cannot explain vertical blowup.
- Horizontal tune scan of BBSS simulations for fixed $\nu_v = 0.57$ (HER and LER)
 - BBHTI appears near $\nu_x k\nu_s/2 = N/2$ but the position of peaks were shifted by wakes. -
 - BBHTI seems not to be dangerous when $\nu_x > 0.53$? (Require simulations at higher bunch currents.)
 - Do the simulations justify the necessity of equalizing ν_s ?
- Outlook \bullet
 - Further investigations in BBSS simulations with wakes.
 - To include other sources causing vertical blowup.
 - Benchmark simulations are welcome.

