Simulations of beam-beam effects

Demin Zhou

Acknowledgements: the SuperKEKB team

SuperKEKB mini-optics meeting Aug. 08, 2019, KEK

> Phase-3 (Early stage) machine parameters

• A few examples of parameter sets observed in the control room

	2019.06.25		2019.07.01		2019.07.01(op1)		2019.07.01(op2)		2019.07.01(op3)	
	HER	LER	HER	LER	HER	LER	HER	LER	HER	LER
I _b (A)	0.05	0.03	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
# bunch	789		1576		1576		1576		1576	
ε _x (nm)	4.466	I.64	4.49	1.93	4.49	1.93	4.49	1.93	4.49	1.93
ε _y (pm)**	16.2	6.05	16.2	6.05	40	6.05	16.2	40	40	40
β _x (mm)	80	80	80	80	80	80	80	80	80	80
β _y (mm)	2	2	2	2	2	2	2	2	2	2
σ _z (mm)	5.05	4.66	5.5	5.2	5.5	5.2	5.5	5.2	5.5	5.2
σ _y (nm)	180	110	180	110	283	110	180	283	283	283
Vx	45.5345	44.542	45.53	44.542	45.53	44.542	45.53	44.542	45.53	44.542
Vy	43.5835	46.606	43.583	46.605	43.583	46.605	43.583	46.605	43.583	46.605
Vs	0.02717	0.02349	0.02717	0.02349	0.02717	0.02349	0.02717	0.02349	0.02717	0.02349
ξ _y (Geom.)	0.0073	0.012	0.088	0.089	0.057	0.089	0.034	0.089	0.034	0.057
L(Geom.)	I.95E+32		3.78E+34		2.63E+34		2.38E+34		I.99E+34	

➤ Machine study: Vertical offset scan and RF phase scan (2019.06.25)

- Beam size blowup was clearly seen at very low bunch current
- This blowup cannot be explained by beam-beam simulations

Ref. A. Morita, KCG shift report and Y. Funakoshi, Machine study report on Jun. 25, 2019

► Machine study: Vertical offset scan and RF phase scan (2019.06.25)

- Vertical offset scan with LER RF room phase 9.2 deg
- Both e+ and e- beams blow up in vertical direction

➤ Machine study: Vertical offset scan and RF phase scan (2019.06.25)

- \bullet LER RF room phase scan with optimum vertical offset target 8.2 μm
- Both e+ and e- beams blow up (and double peaks) in vertical direction

► Machine study: Vertical offset scan and RF phase scan (2019.06.25)

- Vertical offset scan with LER RF room phase 14.2 deg
- Only e+ beam blow up in vertical direction

► Machine study: Vertical offset scan and RF phase scan (2019.06.25)

- Vertical offset scan with LER RF room phase 4.2 deg
- Only e+ beam blow up in vertical direction

Machine study: Vertical offset scan and RF phase scan (2019.06.25)

• Vertical offset scan with LER RF room phase 9.2 deg, RF frequency Δf=-200 Hz, and LER IP dispersion $\xi_v^* = +1 \text{ mm}$

• Only e+ beam blow up in vertical direction

Vertical offset

10

12

Machine study: Vertical offset scan and RF phase scan (2019.06.25)

• Vertical offset scan with LER RF room phase 9.2 deg, RF frequency Δf=0 Hz, and LER IP dispersion $\xi_{v}^{*} = +1 \text{ mm}$

• Only e+ beam blow up in vertical direction

Vertical offset

12

10

➤ Machine study: Vertical offset scan and RF phase scan (2019.06.25)

• Vertical offset scan with LER RF room phase 9.2 deg, RF frequency Δf =+200 Hz, and LER IP dispersion ξ_y^* = +1 mm

• Only e+ beam blow up in vertical direction

► Machine study: Vertical offset scan (2019.05.20)

• Similar beam size blowup was clearly also observed on May. 20, 2019

• The single beam beam size was larger than that of Jun. 25, 2019, so the blowup looked not very significant

Ref. T. Kobayashi, KCG shift report and K. Ohmi, Machine study report on May. 20, 2019

> Parameter set (2019.07.01)

e+(W)e-(S) Lum. (L/L₀)

0.65

0.6

Fractional v.

0.5

0.55

0.7

0.75

NOTE:

With small single beam vertical emittance, the challenge is the beambeam tune shift is too large

=> It is too hard to find
good working point for
both beams
=> Both beams will
blow up easily

e+(S)e-(W)

Parameter set (2019.07.01, op1 and op2)

e+(W)e-(S) Lum. (L/L₀)

Fractional v_{v}

^{1.0e+00}**op1:** 9.0e-01 **Ee+=6.05 pm** _{8.0e-01} ε_{e-}=40 pm

NOTE:

Increasing emittance of the strong beam is similar to emittance knob control => It relaxes the beambeam force felt by the opposite beam

op2:

Parameter set (2019.07.01(op3))

e+(W)e-(S) Lum. (L/L₀)

01

NOTE:

How about increasing the vertical emittance fo the two beam simultaneously? => The large-amplitude particles of the weak beam feel stronger nonlinear beam-beam forces => Beam-beam

resonances coupled to y-motion become outstanding

e+(S)e-(W)

> Parameter set (2019.07.01, with $\beta_x^* = 80$ mm and $\beta_y^* = 1$ mm) e+(W)e-(S) e+(S)e-(W)

Fractional v.

NOTE: The gain of squeezing β_{y}^{*} is obvious: significantly reduce vertical beam-beam tune shift => Relax beam-beam instability a lot

Parameter set (2019.07.01, with β_x* = 50 mm and β_y* = 1 mm) e+(W)e-(S)

NOTE:

The gain of squeezing β_x^* is NOT very obvious: **Because horizontal** beam-beam tune shift is already small => But it is still important: It suppress beam-beam driven synchro-betatron X-Z resonances => This would help a lot in commissioning when we consider machine errors

► Various IP aberrations

• Closed orbit: DX(hor. offset), DPX(hor. crossing angle), DY(vert. offset), DPY(vert. crossing angle), DZ(RF phase)

- Waist(alpha function)
- Linear couplings:
 - X-Y: R₁, R₂, R₃, R₄
 - X-Ζ: η_x, η_x', ζ_x, ζ_x'
 - **Υ-Ζ:** η_γ, η_γ', ζ_γ, ζ_γ'
- Nonlinear couplings:

Chromatic Twiss functions(X-Y and X-Z: Tune, alpha function, beta function) Chromatic X-Y-Z couplings: R1', R2', R3', R4'

Third-order geometric aberrations: px²py, etc.

• Impedance effects

Only DY* and DPY* will be discussed in this talk

► Various IP aberrations: the case of e+ beam

• DPY* (vert. crossing angle) with parameter set of 2019.07.01

** Luminosity becomes very sensitive to DPY* at very small vertical emittance.

** Luminosity drops faster around DPY*=0 because of additional blowup due to nonzero v-angle

** With lattice, large amplitude particles (beam-beam tail) pick up more nonlinear forces from the final focus system

➤ Various IP aberrations: the case of e+ beam

• DPY* (vert. crossing angle) with parameter set of 2019.07.01

**** More beam-beam tail with lattice**

** With lattice, large amplitude particles (beam-beam tail) pick up more nonlinear forces from the final focus system

➤ Various IP aberrations: the case of e+ beam

- DPY* (vert. crossing angle) with parameter set of 2019.07.01
 - ** Similar beam-beam vertical tail distribution at IP, D02V1 and XSORP

50

► Various IP aberrations: the case of e+ beam

• DPY* (vert. crossing angle) with parameter set of 2019.07.01

** Because of dynamic beam-beam effects, simple translation (only use lattice information) of beam size from XRM to IP is not enough

► Various IP aberrations: the case of e+ beam

• DY* (Vertical offset) with parameter set of 2019.07.01

** Luminosity drops faster around DY*=0 because of additional blowup due to nonzero v-offset

** With lattice, large amplitude particles (beam-beam tail) pick up more nonlinear forces from the final focus system

► Various IP aberrations: the case of e+ beam

• DY* (Vertical offset) with parameter set of 2019.07.01

****** More beam-beam tail with lattice

** With lattice, large amplitude particles (beam-beam tail) pick up more nonlinear forces from the final focus system

► Various IP aberrations: the case of e+ beam

- DY* (Vertical offset) with parameter set of 2019.07.01
 - ** Similar beam-beam vertical tail distribution at IP, D02V1 and XSORP

► Various IP aberrations: the case of e+ beam

• DY* (Vertical offset) with parameter set of 2019.07.01

** Because of dynamic beam-beam effects, simple translation (only use lattice information) of beam size from XRM to IP is not enough

► Various IP aberrations: the case of e+ beam

• DPY* (vert. crossing angle) with parameter set of 2019.06.25

** Luminosity and beam size are very insensitive to DPY*. This is very different from experiments.

** BBWS: ε_y = 6.05 pm

** SAD: $\varepsilon_y = 6.05 + 0.194$ pm with 0.194 pm from ideal lattice

** The difference in luminosity and beam size between SAD and BBWS is mainly attributed to nonzero vertical emittance of the ideal lattice

► Various IP aberrations: the case of e+ beam

- DPY* (vert. crossing angle) with parameter set of 2019.06.25
 - ** There is small difference in the beam tail
 - ****** With lattice, a little more tail can be seen

Various IP aberrations: the case of e+ beam

- DPY* (vert. crossing angle) with parameter set of 2019.06.25
 - ** Similar beam-beam vertical tail distribution at IP, D02V1 and XSORP

► Various IP aberrations: the case of e+ beam

• DPY* (vert. crossing angle) with parameter set of 2019.06.25

** The difference between SAD and BBWS can be understood: small emittance from ideal lattice

** The difference between beam size at IP, D02V1 and XSORP is from dynamic beambeam effects? I am not quite sure right now. Need to be confirmed.

4. Summary

► Findings

• Offset scan at low bunch current

** Experiments showed significant beam-beam related blow up in vertical beam size

** But beam-beam simulations (both BBWS and SAD with ideal lattice) cannot reproduce this phenomenon

****** Two possible candidates are under my consideration:

*** The translation of beam size from XRM to IP need to be well understood

*** Machine imperfections: In SAD simulations, I need to take into account

*) the vertical closed orbit as measured with beam

*) the vertical dispersion function along the whole ring as measured with beam

*) other errors, such as misalignment of magnets

I suppose these kind of imperfections might create interplay with beam-beam (even at low bunch currents)

• Beam-beam effects at high currents (or strong beam-beam effects as the final design)

** I think the dynamic beam effects (both linear and nonlinear) will make it difficult to estimate the beam size using XRM data. The translation needs to take into account beam-beam effects

** I propose to prepare another method to estimate beam sizes at IP, such as LABM