

ATLAS 実験用TDCLSIの 陽子及びガンマー線耐性試験

30 March 2003@東北学院大 新井康夫 (KEK)、江村恒夫(農工大) yasuo.arai@kek.jp http://atlas.kek.jp/tdc/

- AMT(ATLAS Muon TDC) Introduction
- TID(Total Ionization Dose) test
- SEE(Single Event Effects) test
- Summary

<u>TDC開発と実験</u>		10 Commercial Process
Chip	Experiments	TMC1004 TMC304 TMC-PHX1
TMC1004	H1	Design
TMC304	D0, K2K SS-520-2 Rocket SELENE月探査機(2004) IonWerks Inc.(USA)	0.1 (b) Pentium II Pentium II 80486
TMC-PHX1	PHENIX	80386 TMC-PHX1 80286 TMC304
AMT	ATLAS@LHC (2007) K2K, Cangaroo,	5 10 ⁵ 8086 TMC1004
(TDC-X)	BepiColombo水星探査機(2009) SCOPE磁気圏衛星 Super Belle	10 ³ 1970 1975 1980 1985 1990 1995 2000 2005 Year

ATLAS実験で使用するLSIは放射線耐性の試験が必須。 また、多くの実験が放射線耐性を持ったTDCを必要としている。

ATLAS MDT TDC

TID(Total Ionizing Dose) Test

- 東京都立大理学部RI施設
- ⁶⁰Co (60 rad/sec) -> 20 krad (300 krad)
- 40 MHz Clock running, Power On.
- Dynamic <-> Static state change through JTAG
- Voltage & Current were measured at every 10 sec.

Yasuo Arai(KEK)

照射後試験

Measure :

- Time Resolution
- Oscillating Frequency of PLL
- CSR Read/Write
- BIST (Built In Self Test) check

物理学会, 30-Mar 2003

<u>トランジスタ特性の変化</u>

- Source : ⁶⁰Co (~90 rad(Si)/sec)
- Biased in worst condition (PMOS short, NMOS ON)
- \cdot 1 week annealing at 100 °C

<u>TID試験のまとめ</u>

- 10 個のAMT-2 chipをATLAS標準試験方法に従って20kradまでCo⁶⁰ ガンマー線照射を行った。
- •照射後1週間室温でのアニール、その後1週間100°Cでのアニール.
- リーク電流、発信周波数、時間分解能等に変化は見られなかった。
- CSR registers や JTAG ロジックにも異常は起こらなかった。
- 300kradまでの照射から、30krad付近からトランジスタ特性に変化 が見られることが分った。
- 300krad照射後でも動作に異常はなかったが、消費電力の増加から 実用的な使用限界は50krad程度と考えられる。

<u>SEE(Single Event Effects): 陽子線照射</u>

- Proton beam at AVF Cycrotron (CYRIC, 東北大学サイクロトロン)
- Irradiation were done with E(proton) = 70 MeV.
- 4 AMT-2 chips were irradiated.
- Beam intensity & profile are monitored with Dosimetry of Cu foil .

Single Event Upset Test

- CSR registers (180 bits) are directly written/verified through JTAG.
- Data buffers (11,360 bits) are tested by using a Built-In Self-Test (BIST) circuit.

Built-In Self Test Logic Memory Signature Addr Register Addr & Data DI DO (45bit) Generator **JTAG** JTAG (Pseudo-Random Out Clock Cont Sequence Generator) \geq

13N Marching Pattern ('10' & '11' Backgrounds)

Addr.	Initialize	1st Step	2nd Step	3rd Step	4th Step
0	W(1)	R(1)W(0)R(0)	R(0)W(1)R(1)	R(1)W(0)R(0)	R(0)W(1)R(1)
1	W(0)	R(0)W(1)R(1)	R(1)W(0)R(0)	R(0)W(1)R(1)	R(1)W(0)R(0)
2	W(1)	R(1)W(0)R(0)	R(0)W(1)R(1)	R(1)W(0)R(0)	R(0)W(0)R(1)
:	\ ♥	\	\	1	1
N-1	W(0)	R(0)W(1)R(1)	R(1)W(0)R(0)	R(0)W(1)R(1)	R(1)W(0)R(0)
		•		•	

Pause A

Addr.	Initialize 1st Step		2nd Step	3rd Step	4th Step	
0	W(1)	R(1)W(0)R(0)	R(0)W(1)R(1)	R(1)W(0)R(0)	R(0)W(1)R(1)	
1	W(1)	R(1)W(0)R(0)	R(0)W(1)R(1)	R(1)W(0)R(0)	R(0)W(1)R(1)	
2	W(1)	R(1)W(0)R(0)	R(0)W(1)R(1)	R(1)W(0)R(0)	R(0)W(1)R(1)	
:		\	Ι	1	/	
N-1	W(1)	R(1)W(0)R(0)	R(0)W(1)R(1)	R(1)W(0)R(0)	R(0)W(1)R(1)	
	Ţ	0				
	Pause	S R				

Proton Beam Flux and Profile

- 100 μm thick Cu Foil (25 mm x 25 mm) was placed in front of the AMT-2.
- γ Spectrum was measured with Ge detector (measure absolute intensity).
- Relative intensity of 5 mm x 5 mm pieces were measured with Imaging Plate.

<u>SEE 試験結果</u>

Chip	Proton fluence (1/cm²)	Effective Fluence (1/cm²)	Radiation Dose (krad)	Latch up	No. of SEU in Mem	σ _{sEU} (Mem) (cm²/bit)	No. of SEU in CSR	σ _{SEU} (CSR) (cm²/bit)
AA	8.10×10 ¹¹	5.94×10 ¹¹	130	None	0	< 3.6×10 ⁻¹⁶	0	< 2.3×10 ⁻¹⁴
СС	8.02×10 ¹¹	5.88×10 ¹¹	128	None	1	< 6.5×10 ⁻¹⁶	0	< 2.3×10 ⁻¹⁴
DD	8.03×10 ¹¹	5.89×10 ¹¹	128	None	0	< 3.6×10 ⁻¹⁶	0	< 2.3×10 ⁻¹⁴
FF	8.06×10 ¹¹	5.91×10 ¹¹	129	None	0	< 3.6×10 ⁻¹⁶	0	< 2.3×10 ⁻¹⁴
Total	3.22×10 ¹²	2.36x10 ¹²		None	1	< 1.6×10 ⁻¹⁶	0	< 5.6×10 ⁻¹⁵

- AMT中にメモリーは~11kbit, CSRは180bit。総数16,000チップ。
- Average value of the hadron flux is 2×10^9 h/cm²/y,

-> SEU < 55 (SEU/MDT system/year).

• No Latch up observed.

<u>SEE Testまとめ</u>

- SEE 試験を70 MeV 陽子ビームを使って行った。
- 2.36 x 10¹² proton/cm²の照射に対して1回アップセットが観測 された。
- メモリーに対するSEU断面積は1.6x10⁻¹⁶(cm²/bit)以下。
- CSRに対するSEU断面積は5.6x10⁻¹⁵(cm²/bit)以下
- MDT全体で、1日0.6回以下のアップセット。
- Latch Upは観測されなかった。

→ AMTチップは、ATLAS Muon検出器で使用する上で、十分な放射線耐性を持っている。

Future Plan

Many Demands for High Resolution, Radiation Tolerant TDC (JHF, Space, TOF, Ion analysis, ...)

ISIテクノロジの現状

Candidate Process 0.18 µm CMOS Standard Cell

Radiation Hardness Tested at NASDA (TID > 500 krad(si), $LET_{th} > 64 MeV/(mg/cm^2)$

Target resolution σ < 50 ps

LSIテクノロジの現状					
設計ルール	0.25µm	0.18µm	0.11µm	90nm	
量産開始	1998-	2000-	2002-	2003-	
動作電圧	2.5/3.3V	1.8/3.3V	1.2/3.3V	1.2/2.5V	
配線層数	2P5M	2P6M	1P8M	1P11M	
分離技術	STI - (S h	allow Tre	ich Isorat	ion) ->	
配線材料	Al	→	Al/Cu—	>	
基板材料	バルク基板	エピ基板	エピ基板	エピ基板/ SOI基板?	
6Tメモリ セル面積	7.6μm²	4.9μm²	2.2µm²	?	
ステータス	-	実用試作	TEG試作	試作予定	