

2016年7月29日 高エネルギー加速器研究機構 素粒子原子核研究所 新井康夫 (yasuo.arai@kek.jp)

- Lecture Schedule (金曜第3時限 12:15-13:30)
   June 17, 24
   July 1, 8, *15(No lecture)*, 22, 29
   Total 6 times
- Contents

(http://research.kek.jp/people/araiy/16lecture/)

- Radiation Measurement and LSI
- Analog CMOS Circuit for Radiation Measurement
- Digital LSI Circuit
- **Generation Semiconductor Radiation Detector**
- 単位認定(Credit)

講義出席及びレポート (田中氏の分と合算)

#### <u>講義予定</u>

## か射線計測とLSI 高エネルギー物理実験とLSI、 LSI技術の変遷 半導体放射線検出器

- 2. 基本法則と道具
  - オームの法則、 信号伝送、
  - 信号規格 ...
- 3. 半導体デバイス 半導体の基礎、

半導体プロセス、 MOSデバイス基礎、

#### 4. アナログCMOS回路

1段増幅回路、差動増幅回路、 カレントミラー、 アナログ・シミュレーション、 オペアンプ回路、 雑音,...

### 5. デジタルLSI回路

CMOS論理回路、メモリー、 演算器、カウンター、同期回路, 順序回路、ADC, TDC、... 論理合成

# 6. 半導体放射線検出器 放射線検出器で使われる回路 放射線の相互作用 検出器の動作原理、 実例、...

#### Analog Memory

#### 高速アナログ電圧記録 必要な時だけデジタイズする。 (高密度、低消費電力)



高エネルギー物理実験等では多くの現象の中から目的とする現象を探しだす 事が多いので多用される。



表 7.1 A-D 変換方式の比較

| <u>A-D変換方式</u>     |                  |                     |                | 方 式                                                                                                                                    | 特徵                                                                                                   | 回路規模                                                                                                                                             |  |  |
|--------------------|------------------|---------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                    |                  |                     |                | 逐次比較形                                                                                                                                  | <ul> <li>・回路構成が単純で比較的小規模な割に速度<br/>と精度の広い適用領域をもつ</li> <li>・基準電圧発生用 D-A 変換と S/H が性能<br/>を支配</li> </ul> | <ul> <li>・比較器, D-A 変換器, S/H<br/>各1個</li> <li>・論理回路の個数小</li> </ul>                                                                                |  |  |
|                    |                  |                     |                |                                                                                                                                        | <ul> <li>S/H 不要で最も高速,ほとんどディジタル回路で,同一回路の繰り返しが多いためLSI化しやすい</li> <li>回路規模,消費電力が大きく,8ビット程度が限度</li> </ul> | <ul> <li>・比較器 (2<sup>n</sup>-1) 個</li> <li>・論理回路の個数比較的大</li> </ul>                                                                               |  |  |
|                    |                  |                     |                | 直 並 列 形                                                                                                                                | <ul> <li>・並列比較形の次に高速.高速な割に回路規模小</li> <li>・S/H, D-A変換器が性能を支配.低速・高精度領域では他の方式に比べ回路規模大</li> </ul>        | <ul> <li>比較器 {(2<sup>m</sup>-1) + (2<sup>k</sup>-1)}<br/>個 m, nは上位及び下位の並<br/>列形 A-D のビット数</li> <li>S/H, D-A 変換器 各1個</li> <li>論理回路の個数小</li> </ul> |  |  |
| 10<br>( <u>7</u> 1 | G<br>Flash       | Flash               | オーバサン<br>プリング形 | <ul> <li>S/H 不要,簡単な折返し雑音防止フィルタでよく,低い素子精度で最も高精度.アナログ回路規模は極めて小さく LSI 化に最適</li> <li>帯域外雑音除去に高精度なディジタルフィルタが必要.変換速度は数 10 ksps 程度</li> </ul> | <ul> <li>・積分器,1ビット量子化器,<br/>1ビットD-A変換器 各1<br/>個</li> <li>・ディジタルフィルタ用論理回<br/>路の個数極めて大</li> </ul>      |                                                                                                                                                  |  |  |
| ) found (          | M                | Pipelii             | ne             | 積 分 形                                                                                                                                  | <ul> <li>・比較器のオフセット誤差の影響がなく直流の変換では最も高精度</li> <li>・内部回路の速度の割に変換速度が低い.高速化に不向き</li> </ul>               | <ul> <li>・比較器,積分器,カウンタ等</li> <li>各1個</li> <li>・論理回路の個数中</li> </ul>                                                                               |  |  |
| rsion fre          | м-               | Sub-range           | Mu<br>sigm     | lti-bit<br>a-delta                                                                                                                     | oit<br>elta                                                                                          |                                                                                                                                                  |  |  |
|                    | M- (             |                     |                |                                                                                                                                        |                                                                                                      |                                                                                                                                                  |  |  |
| 0<br>100<br>10     | - Succe<br>appro | essive<br>oximation | Single-bit     | sigma-delta<br><mark>ating</mark>                                                                                                      | a-delta                                                                                              |                                                                                                                                                  |  |  |
|                    | 4 6              | 8 10                | 12 14          | 16 18                                                                                                                                  | 20                                                                                                   |                                                                                                                                                  |  |  |
|                    |                  | Reso                | lution (bit)   |                                                                                                                                        |                                                                                                      | 5                                                                                                                                                |  |  |

## Time-to-Digital Converter (TDC)









- 回路が簡単。
- 分解能はクロックの周波数で決まる。
- 分解能~1ns
- 読出し速度により入力レートが制限される。
- 高分解能を求めると、高消費電力になってしまう。







- Counter方式よりも高速化しやすい(~0.5 ns)。
- 複数のエッジタイミングを読出す事なく記録出来る。
- 奥行きに制限がある(長時間記録は難しい)。
- 消費電力が大きい。

"1.2 GHz GaAs shift register IC for dead-time-less TDC application" Sasaki, O., et al., IEEE Trans. on Nucl. Sci. Vol. 36, (1989)512 - 516.



- 低い周波数のクロック(~50MHz)で高い分解能(~0.1 ns)が得られる。
- デジタル回路向き。
- 測定範囲を拡大する為に、通常カウンターと組み合せて使用する。
- 低消費電力、高密度。
- 分解能はバッファー(インバータ2段)の遅延時間で制約される。
- 遅延時間のCalibrationが必要。



- ・遅延時間が温度、電圧、プロセスによらず安定。
- ・自動的にFeedbackがかかるのでCalibrationが不要。
- ・遅延を制御するため、分解能は単純なDelay Line方式より少し悪くなる。
- ・遅延時間を制御するので、配線レイアウトに注意が必要。

## <u>放射線と物質との相互作用</u>



γ線のSi中での減衰



放射線とシリコンセンサー



~1電子/1光子



~3000 電子 / 10 keV



![](_page_12_Figure_6.jpeg)

#### <u>現在の最先端Pixel放射線検出器(Hybrid Pixel)</u>

![](_page_13_Figure_1.jpeg)

## SOI Pixel 検出器

![](_page_14_Figure_1.jpeg)

- プロジェクト
- 高比抵抗Si基板と低比抵抗Si基板を絶縁層を介して張合わせ。
- 高比抵抗部にp-n junctionを生成し、センサーとする。
- 絶縁層(BOX: Buried Oxide)に穴を開けセンサーと回路を接続。

## Silicon-On-Insulator (SOI) Wafer

![](_page_15_Figure_1.jpeg)

## **Revolution of Measurement**

![](_page_16_Picture_1.jpeg)

## Revolution of Scale

![](_page_17_Figure_1.jpeg)

![](_page_17_Picture_2.jpeg)

## <u>SOI Pixel検出器の特徴</u>

- 機械的接合がなく、半導体微細加工のみで製造。
   高信頼性、高分解能、低価格が望める。
- ・超薄型センサ(~50μm)による、多重散乱を防ぐ荷電粒子検出。
   厚い空乏層(~500μm)による、X線・赤外線への高い感度。
- ・100%開口率の裏面入射が出来る。
- 高度信号処理回路やメモリーを持つインテリジェント・ピクセルが可能に。
- 過酷な環境(極低温、放射線)への強い耐性。
- 基本は産業界の標準技術。
   (技術発展の取り込みが容易)
   日本発の最先端技術。

![](_page_18_Figure_7.jpeg)

#### MPWランを国内・国外の研究者に解放

![](_page_19_Figure_1.jpeg)

Mask Size 24.6 × 30.8 mm

## <u>SOI検出器の課題</u>

### センサーとエレクトロニクスが近接しているので、

![](_page_20_Figure_2.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_0.jpeg)

## 3D Tomography with Syncrotron X-ray

![](_page_26_Picture_1.jpeg)

- Sensor: INTPIX4 FZn, Backside Illumination
- HV: 200V、Integration Time: 1ms、ScanTime: 320ns/pix, 1000frame/event
- KEK PF, X-ray Energy: 9.5keV
- Took images for 0~180°at every 1 degree.

#### <u>Computed Tomography (CT) with</u> <u>Syncrotron X-ray</u>

![](_page_27_Picture_1.jpeg)

28

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_29_Figure_1.jpeg)

Size : 14  $\mu$ m x 14  $\mu$ m with CDS circuit

#### <u>積分型Pixel回路例</u>

![](_page_30_Figure_1.jpeg)

![](_page_31_Figure_0.jpeg)

#### <u>積分型Pixel回路例</u>

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

#### Design Rule (Drawing Rule)

![](_page_35_Figure_1.jpeg)

![](_page_36_Picture_0.jpeg)

| 許容電流密度 | Metal 配線     | < 1 mA/µm   |
|--------|--------------|-------------|
|        | Contact, Via | < 0.78 mA/個 |

| シリサイド拡散、ゲート | 10 $\Omega/sq$   |
|-------------|------------------|
| シリサイドなし拡散   | 250 $\Omega/sq$  |
| メタル         | 0.06 $\Omega/sq$ |
| Contact     | 12 Ω/個           |
| Via         | 3 Ω/個            |
| ポリ抵抗        | 410 $\Omega/sq$  |

| 容量 | MIM Capacitance | 1 fF/μm²     |
|----|-----------------|--------------|
|    | Gate 容量         | 8 fF/μm²     |
|    | Metal 浮遊容量      | ~0.05 fF/µm² |

#### <u> Pixel Layout例</u>

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_0.jpeg)

## ご静聴有り難う。

エレクトロニクスはあらゆる測定の基礎。 今後さまざまな場面に活かして下さい。

不明な点は yasuo.arai@kek.jp ~