On and Off-line test results of the KISS gas cell

1.KISS setup
 2.Off-line test
 3.On-line test

Y. Hirayama, RNB group, KEK, Japan

10-11, December, 2012 Low-Energy Radioactive Isotope Beam (RIB) Production by In-Gas Laser Ionization for Decay Spectroscopy at RIKEN

Collaborators

KEK

S.C. Jeong, H. Miyatake, H. Ishiyama, Y.X. Watanabe, N. Imai, Y. Hirayama, M. Oyaizu

RIKEN

M. Wada, T. Sonoda, Y. Matsuo

K.U. Leuven

P. Van Duppen, Yu. Kudryavtsev, M. Huyse

KISS setup

KISS@RIKEN

Gas cell chamber

Preliminary optimized design of gas cell

Simulation results

Off-line test

Performance test of the mass separator mass resolution & beam spot

Gas-cell optimization using Ni filament laser spot and path SPIG RF and DC voltages

hydro-compound abundances (Ni, Fe, ...) element (chemical) dependence and reduction by cooling

Ionization of Ni and Fe in gas cell with 50kPa

Successfully extract Ni and Fe beams with 26 kV

Using known ionization scheme for off-line development of KISS

Nickel (Z = 28)
Ionization energy :
Ei = 61619 cm⁻¹
(= 7.6398 eV)
AIS
Ei

$$\lambda_2$$
 = 537.855nm
 $3d^84s4p (J = 5)$
 $E_x = 43090.08cm^{-1}$
 $\lambda_1 = 232.072nm$

Search for new efficient ionization scheme for on-line development of KISS

Iron (Z = 26)
Ionization energy :
Ei = 63737 cm⁻¹
(= 7.9024 eV)
AIS
Ei

$$\lambda_2$$
 = 423.784nm
3d⁶4s4p (J = 5)
E_x = 40257.36cm⁻¹
 λ_1 = 248.402nm
3d⁶4s² (J = 4)

15µJ/p/φ10mm@gas cell

Mass distribution using purified Ar gas

 $M/\Delta M \sim 900$ Beam spot : ϕ 2mm in FWHM

In order to reduce the amount of hydrates, development of cryogenic gas-cell.

The design work is in progress.

Search for auto-ionizing state (AIS) of rhenium (Z=75)

Saturation powerSaturation power100μJ/pulse1.5mJ/pulse@φ10mm beam spot@φ10mm beam spot

Search for auto-ionizing state (AIS) of iridium (Z=77)

Saturation powerZee: 400.434mmSaturation powerSaturation power100μJ/pulse3mJ/pulse@φ10mm beam spot@φ10mm beam spot

On-line test

Energetic Fe → Fe¹⁺

efficiency / selectivity measurement by Ni beam injection rate:

- To simulate all the processes in the gas-cell (stopping, neutralization, gas-transport, laser-ionization and extraction)
- →Effect induced by the primary beam irradiation
- →Effect of blocking beam irradiated area (shadowing ionization zone).

 136 Xe+ 198 Pt \rightarrow Ir / Re isotopes

Applying to reaction products (with Xe beam):

- →ionization efficiency (atomic states of neutralized reaction products)
- →isobar separation

⁵⁶Fe beam implantation

Mass distribution

The mass distribution was insensitive to the ionization laser.

No ⁵⁶Fe atom ionized by the laser

The pattern of the beat in mass distribution is about 14, 15, 18 AMU.

Molecular ions are made of hydrocarbons: $(CH_2)_n$, $(CH_3)_n$, hydrates $(H_2O)_n$

Many impurities !!

Off-line test II

~ Investigation of origin of impurities ~

Mass distribution of Fe evaporated from filament

Beam intensity was measured using channeltron in order to detect impurity ions with the intensity as low as a few hundred counts.

In the case of Fe filament only, no impurities except for hydrates.

It is supposed that the impurities are made of Ar⁺.

Neutral Fe atoms would not react with the impurity molecules.

Mass distribution using α source w/o filament

Summary

KISS : Gas catcher + laser ionization +ISOL

- KISS was installed in E2, E3 and J3 rooms at RIKEN
- Nickel and iron evaporated from filaments have successfully been extracted as beams at off-line test.
- Efficient ionization schemes of Iron, Iridium and Rhenium have been established at off-line test successfully.
- At the first on-line test, we could not observe laser ionized iron ions because our gas-cell system was dirtier than we expected.
 - -
- We bake the gas-cell system to reduce the impurities and search for the dirty spots in the system.

After the reduction of impurities,

we can measure the extraction efficiency and the selectivity using ⁵⁶Fe beam at the next MT.