Online Commissioning of MR-TOF mass spectrograph at RIKEN

Yuta Ito^{A,B} 筑波大学 University of Tsukuba

-Collaborators-

M. Wada^B, P. Schury^{A,B}, S.Naimi^B, Tetsu Sonoda^B, H. Mita^{A,B}, A. Takamine^{B,C}, K. Okada^{B,D}, H. Wollnik^{B,E}, A. Ozawa^{A,B}

Univ. Tsukuba^A, RIKEN Nishina Center^B, Aoyama Gakuin Univ.^C, Sophia Univ.^D, Univ. Giessen^E

Motivation

Experimental Setup

Results

Physics Motivation

Requirements

Low production yield

♦ High efficiency

Short-lived

◇ Fast measurement

Heavy

 Small mass dependence of mass resolving power (MRTOF vs. PTMS) Experimental Motivation

- Whole system check with unstable nuclei online
- Efficiency check
 - \diamond ⁸Li: $T_{1/2}$ = 840 ms, ⁸Li(β -)⁸Be(2 α)

 \diamond Easy evaluation

- Systematic error evaluation
- Accuracy and precision of MRTOF-MS
 - ♦ Calibration by non-isobaric references

Motivation

Experimental Setup

Results

PTMS vs. MRTOF-MS

6. Detect at MCP

e)

Experimental Setup

Yuta ITO: Online Commissioning of MR-TOF mass spectrograph at RIKEN

Cooling Time

Cooling requires only 2 ms

Radial cooling (RF)

Axial cooling (segmented DC)

Yuta ITO: Online Commissioning of MR-TOF mass spectrograph at RIKEN

		Trapping efficiency (%)		
		to MRTOF-MS	to Ortho-CEM*	
Offline	⁷ Li+	2.4	5.1	
	²³ Na ⁺	12.1	26.7	

*gain by detection efficiency

⁸Li Online Experiment

- ⁸Li was produced by projectile fragmentation
 ¹³C: 100 MeV/u, Be: 1.86 g/cm²
- ◆ ⁸Li ions were selected by RIPS fragment separator
- Ions were stopped in 20 mbar, extracted by Carbon-OPIG and RF-carpet, purified by QMS, then transported to MRTOF
 preparation trap system
- ◆ ToF measurements of ⁸Li⁺ were interleaved with that of ⁷Li⁺, (⁴He₂⁺), ⁹Be⁺, (⁹BeH⁺), ¹²C⁺
- ⁸Li⁺ could also be sent straight through trap to SSD for efficiency measurement

Motivation

Experimental Setup

Results

 $\epsilon_{@MCP} = 2.9 \% * \epsilon_{@MCP}(^{7}Li) = 2.4\%$ offline

ToF Spectra

Fitting function (Gaussian with Exponential tail)

At t_m+t_c , the differential is connected smoothly. The t_c and σ determined by reference ion ${}^{12}C^+$.

$$f(t) = \begin{cases} f_1(t) = A \cdot \exp\left\{-\frac{(t-t_m)^2}{2\sigma^2}\right\} & (t \le t_m + t_c) \\ f_2(t) = A \cdot \exp\left\{t_c \frac{2t_m - 2t + t_c}{2\sigma^2}\right\} & (t \ge t_m + t_c) \end{cases}$$

```
M.J. Koskelo et al., Comp. Phys. Commun. 24 (1981) 11
```


I. Using ${}^{12}C^+$ ToFs before/after measurement, ${}^{12}C^+$ ToF at the time,

 t_{cor} , is derived for each measurement.

- 2. Calculate the ratio, $R_s = t_s / t_{cor}$
- 3. Calibrate the ToF using R_{7Li} and R_{9Be}
- 4. Derive the mass of ⁸Li⁺

⁸Li Mass

Table 4: Derived mass of ⁸Li⁺ and its precision. Also shown are the literature value m_{lit} [1], and the deviation of m_{exp} from m_{lit} . The deviation of -1.1 keV was smaller than the error of experimental value 3.7 keV. Therefore, our mass measurement of MRTOF-MS was performed reasonably.

	$m_{\rm exp}$ (keV)	$\delta m_{\rm exp}/m_{\rm exp}$	<i>m</i> _{lit} (keV)	Δm (keV)
⁸ Li ⁺	7472385.8(2.4)	3.2×10^{-7}	7472386.88(5)	-1.6

Conclusion

Summary

- We performed online commissioning of MRTOF-MS with unstable nuclei ⁸Li
- Newly developed devices worked fine
- ◆ Overall trapping efficiency: 2.9% for ⁸Li⁺
- Mass precision: $\delta m/m = 3.2 \times 10^{-7}$
- (Mass deviation: -1.6 keV) < (Mass uncertainty: 2.4 keV)</p>
- ◆ Move to GARIS for SHE mass measurement

(and connect to BigRIPS, PALIS, KISS, and any other RI sources)

Thank you for your attention

