Proposal of laser spectroscopy at SLOWRI

Hideki limura Japan Atomic Energy Agency

Parasitic Laser Ion-Source (PALIS)

RF-Carpet Gas Cell

	RF-carpet Gas Cell	PALIS	ISOL
elements	all	~70%	<50%
extraction time	~10 ms	0.1-1 s	~1 s
efficiency	~10%	~1%	
availability	<2 weeks/year	every day	

Wada(RIKEN)

• First step

in-source laser spectroscopy at PALIS high sensitivity relatively low resolution ↓ ↓

Second step

collinear laser spectroscopy relatively low sensitivity high resolution \downarrow μ , Q, $\delta < r^2 >$

Zn (Z=30, N=37, I=5/2)

a	b	с
1523 MHz	2131	
		•)

In (Z=49, N=66, I=9/2)

Indium resonant laser ionization 2012 July

^{113,115}In ionization spectrum (July, 2012)

In (Z=49, N=66, I=9/2)

Isotope Shift = (Normal Mass Shift) + (Specific Mass Shift)+ (Field Shift) $\delta < r^2 > \delta < r^2$

Z	Element	Mass number	Transition	IS (MHz)	NMS (MHz)	FS+SMS (MHz)
19	К	39-41	4s-4p	236	265	-29
29	Cu	63-65	4s-4p	600	244	356
30	Zn	64-66	4s ² -4s4p	480	362	118
31	Ga	69-71	4p-5s	-33	165	-198
36	Kr	82-84	5s-5p	60	54	6
37	Rb	85-87	5s-5p	78	56	22
38	Sr	86-88	5s ² -5s5p	126	94	32
40	Zr	90-92	4d ³ 5s-4d ³ 5p	-360	84	-444
47	Ag	107-109	4d ¹⁰ 5s-4d ¹⁰ 5p	-450	83	-533
48	Cd	112-114	5s ² -5s5p	-450	78	-528
49	In	113-115	5p-6s	258	61	197
54	Xe	134-136	6s-6p	-90	22	-112

For the Q and $\delta < r^2 >$ measurements, the resolution of < 100 MHz is needed.

- Improvement of the resolution at PALIS narrow band laser in gas-jet
- Collinear spectroscopy

SLOWRI 2011 original plan

Collinear laser spectroscopy

Lioubimov(Texas A&M, RIKEN)

$$v_0 = (v_{\text{anticoll}} \times v_{\text{coll}})^{1/2} \longrightarrow v_0 = 485573619.7 (3) \text{ MHz}$$

Reverse Ion Extraction from Buncher (TRIUMF)

Expected yield by PALIS on-line experiments

