In-Gas Laser Ionization and Spectroscopy experiments at S³-GANIL

R. Ferrer, L. Ghys, M. Huyse, Yu. Kudryavtsev, D. Pauwels, D. Radulov, L. Rens, P. Van den Bergh, C. Van Beveren, and P. Van Duppen Instituut voor Kern- en Stralingsfysika, KU Leuven (Belgium)

Low-Energy Radioactive Isotope Beam Production by In-Gas Laser Ionization for Decay Spectroscopy at RIKEN December 10-11, 2012 RIKEN-Wako

OUTLINE

- Motivation
- In-Gas-Cell Laser Spectroscopy @ LISOL
- Progress on the implementation of In-Gas-Jet Laser Spectroscopy
- Summary and Outlook

MOTIVATION

Strategic areas of chart of nuclides \rightarrow understand nuclear structure effects

- N = Z nuclei Study role of proton-neutron correlations -
- Proton drip line rp process, nuclei far off stability -
- Proximity doubly magic N = Z = 50 strong shell correction effects -
- SHE understanding of SHE and those at the limit of nuclear existence -

DAY 1 @ **S3 >** In Gas Laser Ionization and Spectroscopy experiments of:

 ⁹⁴Ag High-spin isomerism, β-delayed p, 1- and 2-p emission
 ⁸⁰Zr (spk. person: B. Bastin) Single particle behavior and effective interactions
 ¹⁰⁷⁻¹⁰¹Sn

Test validity of shell-model predictions

□ VHE (Z ~ 89 - 102)

Validate nuclear and atomic theory

R. Ferrer - IGLIS Workshop Riken -

S³ @ SPIRAL2

LISOL Beams since 1994

Dual Chamber Gas Cell

In-Gas-Cell Laser Spectroscopy of Ag

R.F. Phys. Lett. B (in preparation)

• Not possible HFS measurements (FWHM~15GHz) λ_1 =254.7 nm ³P_n

⁹²Mo(¹⁶O-100 MeV,2-3n)^{105,106}Sn

Strong v-dependence on gas cell pressure

¹₽₁

continuum

Aut. state

 λ_{2} =454.9 nm

IP 59232.69 cm⁻¹

39257.1 cm⁻¹

Shift = -150(10) MHz/mbar Broadening=210(25) MHz/mbar

Attempt at Laser Spectroscopy of Sn

Broadband Spectroscopy on Ac

R. Ferrer - IGLIS Workshop Riken -

Increase Resolution

In-Gas-Jet Laser Spectroscopy

- Ionization in cold jet expanding out of the gas cell
- and Selectivity
- Ionization in LIST mode

K. Blaum et al., NIM B204 (2003) 331

Demonstrated proof of principle @ LISOL

Wavenumber [cm⁻¹]

T. Sonoda et al. NIM B267 (2009) 2918

- Improve spatial overlap and temporal overlap
- Reduce laser bandwidth

R. Ferrer - IGLIS Workshop Riken -

Commissioning of the RFQ IG's

Transmission through RFQ IG's

<u>Comparison experiment vs. simulation</u> (bkg p = 1e-3 mbar)

- Performance of ion guides found to be in agreement with expectation
- Transmission efficiency $\epsilon = 80\%$
- Similar transmission found for bkg p=0.1 mbar

Selection of Ions from the Gas Jet

- Determine the blocking potential
- Time profiles with lasers in counterpropagating direction

Sideband Formation

A/Q= 81 $[^{63}Cu H_2O]^+$ DC2= -10 V 1*10⁻¹ mbar

 Molecule formation occurs in the GC (short mfp) and not in the gas jet (long mfp)

Effect of dc gradient on the Ion Beam

DC1= 40 V - Time profiles with lasers in counterpropagating direction 1*10⁻¹ mbar DC2= 0 V 2.5 DC2= -1 V — 10⁻³ mbar DC2= -2 V 2.0 10⁻¹ mbar Arrival time (ms) DC2= -5 V DC2=-10 V 1.5 DC2=-20 V 100 Counts on SEM (arb. u) DC2=-40 V 1.0 DC2=-50 V DC2=-60 V 0.5 0.0 -10 -50 -20 -30 -40 -60 0 10 DC2 (V) 4.0 3.5-■— 10⁻³ mbar 3.0 – 10⁻¹ mbar FWHM (ms) 2.5 1 2.0 0.2 10 t (ms) 1.5 1.0 0.5- \checkmark Manipulation of ions by dc gradient 0.0 -20 0 -10 -30 -40 -50 -60 DC2 (V)

A/Q = 63

Improving Time Overlap

- Test of a high pulse repetition rate laser system (Uni-Mainz, GANIL, JYFL, RIKEN, IPNO, JINR)
 - Performance comparison between high repetition Ti:sa lasers and LISOL dye lasers
 - Comparable results for in-gas-cell ionization

- Resolution of HFS of stable ⁶³Cu in the gas jet mainly limited by laser bandwidth

R. Ferrer – IGLIS Workshop Riken –

Reduction of the Laser Bandwidth

• Study of typical LISOL narrow-band pulse using FP interferometer

- Radial profile of interference ring shows four oscillation modes
- Separation between modes is 400 MHz
 → mode FWHM= 150MHz
 Laser bandwidth ~1.4 GHz (SHG)

Implementation of a thicker etalon (14 mm air spaced) allows selection of a single mode
 → 450 MHz FWHM (Doppler broad.)

2.) Amplification of CW Single Mode Diode Laser in Pulsed Dye Amplifier

High energy HFS components of the 327 nm line in ^{63,65}Cu

• Estimated 90 MHz Fourier-limited (5ns) laser bandwidth is affected by residual Doppler broadening resulting in a signal line width of 150 MHz

HELIOS @ KU Leuven

European Research Council

Laser equipment for IGLIS @ HELIOS

Two step laser ionization spectroscopy in the gas cell

- Two high-repetition-high-power Nd:YAG pump Laser
- Max. average power = 100 W (@ 532 nm)
 - 40 W (@ 355 nm)
- Max. repetition rate = 15 kHz
- Two high repetiton rate dye lasers
- Tunable wavelength from 215 to 900 nm
- Linewidth \sim 0.07 cm $^{-1}$ (2 GHz)

For high resolution spectroscopy in the gas jet first step will consist of

- A continous wave (CW) single mode tunable diode laser
- Linewidth = 1 MHz
- Typical (mode-hop free) tuning range ~ 20 nm
 Suitable for only one element (requires change of diode depending on adopted ionization scheme)
- A pulsed dye amplifier with second harmonic generator

IGLIS Setup @ S³

Summary & Outlook

- In-gas-cell laser spectroscopy of ⁵⁷⁻⁵⁹Cu and ⁹⁷⁻¹⁰¹Ag performed at LISOL
- Similar results are being pursued for the Ac isotopes
- In-gas-jet laser spectroscopy will allow higher resolution & selectivity
 → More isotopes will be accessible
- First implementation @ LISOL \rightarrow Bent RFQ + Narrow band laser + free jet (de Laval Nozzle)
- RFQ IG's commissioned and tested \rightarrow Performance according to expectations
- Start construction of HELIOS laboratory @ KU Leuven
- Commission new (high repetition) laser system
- Study gas jet formation and test new gas cell design
- Optimize high-resolution laser spectroscopy in the gas jet (see talk Yuri)
- Apply technique on radioactive beams @ S³

Acknowledgments

LISOL team:

R.F, L. Ghys, M. Huyse, Yu. Kudryavtsev, D. Pauwels, D. Radulov, L. Rens, P. Van den Bergh, C. Van Beveren, and P. Van Duppen

LISOL Alumni: T. Cocolios, I.G. Darby, T. Sonoda

Collaborators:

University of Mainz

A. Hakimi, T. Kron, S. Raeder, S. Richter, J. Rossnagel, K. Wendt

GANIL-SPIRAL2- IPN Orsay

B. Bastin, S. Franchoo, N. Lecesne, F. Lutton, B. Osmond, J. Piot, H. Savajols , J. C. Thomas

JYFL University of Jyväskylä

I. Moore, M. Reponen, V. Sonnenschein

RIKEN T. Sonoda JINR-Dubna S. Zemlyanoy

