# **RIKEN GARIS** as a promising interface for SHE chemistry



**RIKEN Nishina Center** 

Hiromitsu Haba



## **CONTENTS**

- 1. Chemistry of new elements
- 2. RIKEN GARIS as a pre-separator for SHE chemistry
- 3. Performance of the GARIS gas-jet system
- 4. Perspectives of SHE nuclear chemistry at RIKEN
- 5. Summary

## **Periodic table of the elements (2012)**

| $\sum$      | 1                          | 2     | 3    | 4   | 5   | 6   | 7   | 8   | 9     | 10    | 11  | 12  | 13  | 14     | 15  | 16   | 17   | 18  |
|-------------|----------------------------|-------|------|-----|-----|-----|-----|-----|-------|-------|-----|-----|-----|--------|-----|------|------|-----|
| 1           | 1                          |       |      |     |     |     |     |     |       |       |     |     |     |        |     |      |      | 2   |
| 1           | Н                          |       |      |     |     |     |     |     |       |       |     |     | He  |        |     |      |      |     |
|             | 3                          | 4     |      |     |     |     |     |     |       |       |     |     | 5   | 6      | 7   | 8    | 9    | 10  |
| 2           | Li                         | Be    |      |     |     |     |     |     |       |       |     |     | В   | С      | Ν   | 0    | F    | Ne  |
|             | 11                         | 12    |      |     |     |     |     |     |       |       |     |     | 13  | 14     | 15  | 16   | 17   | 18  |
| 3           | Na                         | Mg    |      |     |     |     |     |     |       |       |     |     | Al  | Si     | Р   | S    | Cl   | Ar  |
|             | 19                         | 20    | 21   | 22  | 23  | 24  | 25  | 26  | 27    | 28    | 29  | 30  | 31  | 32     | 33  | 34   | 35   | 36  |
| 4           | К                          | Ca    | Sc   | Ti  | V   | Cr  | Mn  | Fe  | Со    | Ni    | Cu  | Zn  | Ga  | Ge     | As  | Se   | Br   | Kr  |
|             | 37                         | 38    | 39   | 40  | 41  | 42  | 43  | 44  | 45    | 46    | 47  | 48  | 49  | 50     | 51  | 52   | 53   | 54  |
| 5           | Rb                         | Sr    | Y    | Zr  | Nb  | Mo  | Тс  | Ru  | Rh    | Pd    | Ag  | Cd  | In  | Sn     | Sb  | Те   | - L  | Xe  |
|             | 55                         | 56    | 57   | 72  | 73  | 74  | 75  | 76  | 77    | 78    | 79  | 80  | 81  | 82     | 83  | 84   | 85   | 86  |
| 6           | Cs                         | Ва    | La   | Hf  | Та  | W   | Re  | Os  | Ir    | Pt    | Au  | Hg  | ΤI  | Pb     | Bi  | Ро   | At   | Rn  |
|             |                            |       | •    |     |     |     |     |     |       |       |     |     |     |        |     |      |      |     |
| Li          | antha                      | anide |      | 57  | 58  | 59  | 60  | 61  | 62    | 63    | 64  | 65  | 66  | 67     | 68  | 69   | 70   | 71  |
|             |                            |       |      | La  | Ce  | Pr  | Nd  | Pm  | Sm    | Eu    | Gd  | Tb  | Dy  | Но     | Er  | Tm   | Yb   | Lu  |
|             |                            |       |      | 89  | 90  | 91  | 92  | 93  | 94    | 95    | 96  | 97  | 98  | 99     | 100 | 101  | 102  | 103 |
| Actinide •• |                            |       |      | Th  | De  | 11  | Nic |     | A 100 | Circo |     |     | Γ.  | E ince |     | No   | 1.00 |     |
|             |                            |       | •    | AC  | IN  | Pa  | U   | мр  | Pu    | Am    | Cm  | ВК  | C   | ES     | FM  | IVIO | INO  | Lľ  |
|             | 87                         | 88    | 89   | 104 | 105 | 106 | 107 | 108 | 109   | 110   | 111 | 112 |     | 114    |     | 116  |      |     |
| 7           | Fr                         | Ra    | Ac   | Rf_ | Db  | Sg  | Bh_ | Hs_ | Mt    | Ds_   | Rg  | Cn_ | 113 | FI_    | 115 | Lv   | 117  | 118 |
|             |                            |       | , .0 |     |     |     | BIT |     |       |       | 6.  |     |     |        |     |      |      |     |
|             | Superheavy elements (SHEs) |       |      |     |     |     |     |     |       |       |     |     |     |        |     |      |      |     |

# **1. Chemistry of new elements**

#### **Frontiers in chemistry**

- Chemical properties, periodicity, and electronic structure of new elements? Relativistic effects on chemical reactions?
- On-line single-atom chemistry with accelerators





## **Publications of Experimental Studies on SHE Chemistry**



#### **Conventional experimental procedure with gas-jet transport technique**



#### Limitations in the conventional method

- Background radioactivities from a large amount of by-products
- Decrease of gas-jet yields due to plasma condition induced by the beam

## 2. RIKEN GARIS as a pre-separator for SHE chemistry

#### **RIKEN RI Beam Factory**



#### **Breakthroughs in SHE chemistry**

- Chemical and physical experiments under low background condition
- Stable and high gas-jet transport efficiency
- New chemical reaction systems that were not accessible before



- Development of a gas-jet transport system coupled to GARIS
  <sup>169</sup>Tm(<sup>40</sup>Ar,3n)<sup>206</sup>Fr; <sup>208</sup>Pb(<sup>40</sup>Ar,3n)<sup>245</sup>Fm; <sup>238</sup>U(<sup>22</sup>Ne,5n)<sup>255</sup>No
- Production and decay studies of <sup>261</sup>Rf<sup>a,b</sup> and <sup>265</sup>Sg<sup>a,b</sup> for chemical studies
  <sup>248</sup>Cm(<sup>18</sup>O,5n)<sup>261</sup>Rf<sup>a,b</sup>; <sup>248</sup>Cm(<sup>22</sup>Ne,5n)<sup>265</sup>Sg<sup>a,b</sup>

#### Previous decay studies of <sup>261</sup>Rf and <sup>265,266</sup>Sg

• Ghiorso et al., PL **32B**, 95 (1970).

<sup>248</sup>Cm(<sup>18</sup>O,5*n*)<sup>261</sup>Rf: Gas-jet + Rotating wheel

• Lazarev et al., PRL **73**, 624 (1994).

<sup>248</sup>Cm(<sup>22</sup>Ne,5;4*n*)<sup>265;266</sup>Sg: DGFRS + FPD (6; 4 events)

• Türler et al., PRC 57, 1648 (1998).

<sup>248</sup>Cm(<sup>22</sup>Ne,5;4*n*)<sup>265;266</sup>Sg: Gas-jet + OLGA + ROMA [13(–2.8 as N<sub>R</sub>); 3 events]



#### Düllmann and Türler: PRC 77, 064320 (2008).

- <sup>208</sup>Pb(<sup>70</sup>Zn,*n*)<sup>277</sup>Cn: SHIP/GARIS + FPD (4 events)
- <sup>248</sup>Cm(<sup>26</sup>Mg,5*n*)<sup>269</sup>Hs: Gas-jet + COLD/CALLISTO/COMPACT (20 events)
- <sup>248</sup>Cm(<sup>22</sup>Ne,5;4*n*)<sup>265;266</sup>Sg: Reanalysis (36 events)

| Refs.<br><sup>248</sup> Cm( <sup>22</sup> Ne,5 <i>n</i> ) <sup>265</sup> Sg | Method                                      | <i>E</i> <sub>beam</sub> | No of.<br>events | σ<br>[pb] | <sup>248</sup> Cm( <sup>22</sup>                | Ne,5 <i>n</i> )                        | <sup>265</sup> Sg |
|-----------------------------------------------------------------------------|---------------------------------------------|--------------------------|------------------|-----------|-------------------------------------------------|----------------------------------------|-------------------|
| $1 a z a row at al (1004)^{a}$                                              | DGERS                                       | 116                      | 4                | 80        |                                                 | 8.85 8                                 | .9 s 16.2 s       |
| Lazarev et ul. (1994)                                                       | DGFKS                                       | 121                      | 6                | 320       | (80/20%)                                        |                                        |                   |
| Gregorich <i>et al.</i> (1996)                                              | MG                                          | 121                      | 3                |           |                                                 | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 8.70              |
| Türler <i>et al.</i> (1998,1999)                                            | OLGA                                        | 121/123                  | 19               | 206       | <sup>248</sup> Cm( <sup>18</sup> O,5 <i>n</i> ) | <sup>261</sup> Rf                      | (12/00/0)         |
| Türler <i>et al.</i> (1998) <sup>b)</sup>                                   | PSI Tape                                    | 119                      | 1                | 78        |                                                 | X X?                                   |                   |
| Dressler <i>et al.</i> (2000) <sup>b)</sup>                                 | PSI Tape                                    | 116                      | 1                | 73        |                                                 | 08535                                  | J                 |
| Hübener <i>et al.</i> (2001) <sup>b)</sup>                                  | HITGAS                                      | 119                      | 2                | 92        | 8.28                                            | 8 51                                   | SF (91%)          |
| a) τ( <sup>265</sup> Sg) was not me<br>b) Only sensitive to α-              | asured.<br>SF chains                        | <sup>257</sup> No        | (9%)             |           |                                                 |                                        |                   |
| For future chemical s<br>→ Decay studies on <sup>2</sup>                    | tudies<br><sup>48</sup> Cm( <sup>18</sup> O | 24.5 s<br>8.222 (8       | 3%), 8.323       | 8 (17%)   |                                                 |                                        |                   |
| 24                                                                          | 48Cm(22N                                    | Decen                    | attors           | in 2000   |                                                 |                                        |                   |

Decuy puttern m 2000

#### Experimental setup for <sup>248</sup>Cm(<sup>18</sup>O,5*n*)<sup>261</sup>Rf



# 3. Performance of the GARIS/gas-jet system

(a) <sup>169</sup>Tm(<sup>40</sup>Ar,3*n*)<sup>206</sup>Fr



- Successful extraction of <sup>206</sup>Fr to MANON after the GARIS separation
- Gas-jet efficiency: 90%
- Beam-Independent gas-jet yield



- Separation factors for <sup>211</sup>Bi and <sup>211m,212m</sup>Po: > 10<sup>4</sup>
- GARIS eff.:  $43 \pm 4\%$  for  $\Phi 60$  mm (assumption:  $\sigma = 15$  nb)
- Gas-jet eff.: 83±9%

#### (c) <sup>248</sup>Cm(<sup>18</sup>O,5*n*)<sup>261</sup>Rf<sup>a</sup>



Haba et al., EPJD 45(2007)81.

- 161 α (58 α-α) / 8.2-h meas.
- GARIS eff.: 7.8±1.7% for Φ100 mm (σ = 13 nb@JAEA)
- Gas-jet eff.: 52±12%
- Yield of <sup>261</sup>Rf<sup>a</sup> at the chemistry laboratory: ~0.5 atoms/min



#### (d) <sup>248</sup>Cm(<sup>18</sup>O,5*n*)<sup>261</sup>Rf<sup>b</sup>



#### Numbers of 8.52-MeV $\alpha$ and SF

| Step | No. of e | events | Dose                   |
|------|----------|--------|------------------------|
| [s]  | 8.52-α   | SF     | [ × 10 <sup>18</sup> ] |
| 30   | 0        | 13     | 1.2                    |
| 2.0  | 24       | 86     | 2.8                    |

#### $T_{1/2}$ of 8.52-MeV $\alpha$ and SF

|            | <i>T</i> <sub>1/2</sub> [s] |
|------------|-----------------------------|
| 8.52-MeV α | 2.4±0.8                     |
| SF         | $1.8 \pm 0.4$               |

#### Correlated events on 8.52-MeV $\alpha$

| $E_{\alpha 2} = 8 - 10 \text{ MeV}; E_{SF} > 30 \text{ MeV}, \Delta T_2 = 200 \text{ s}$ |                    |                |                    |                |  |  |  |
|------------------------------------------------------------------------------------------|--------------------|----------------|--------------------|----------------|--|--|--|
| No.                                                                                      | 8.52-M             | eV α           | Correlat           | ted α          |  |  |  |
|                                                                                          | $E_{\alpha}$ (keV) | $\Delta T$ (s) | $E_{\alpha}$ (keV) | $\Delta T$ (s) |  |  |  |
| 1                                                                                        | 8.47               | 4.77           | 8.29               | 0.59           |  |  |  |
| 2                                                                                        | 8.54               | 1.39           | 8.31               | 34.60          |  |  |  |
| 3                                                                                        | 8.45               | 2.66           | 8.23               | 34.01          |  |  |  |
| 4                                                                                        | 8.54               | 6.56           | 8.22               | 8.31           |  |  |  |
| 5                                                                                        | 8.44               | 0.58           | 8.18               | 31.96          |  |  |  |
| 6                                                                                        | 8.51               | 4.15           | 8.23               | 77.31          |  |  |  |

Random: <0.58

Confirmation of <sup>261</sup>Rf<sup>b</sup> by <sup>248</sup>Cm(<sup>18</sup>O,5*n*)<sup>261</sup>Rf<sup>b</sup>

- $E_{\alpha} = 8.52 \pm 0.05 \text{ MeV}$
- $T_{1/2} = 1.9 \pm 0.4$  s
- Branching ratio (SF/ $\alpha$ ) = 73 $\pm$ 6%/27 $\pm$ 6%
- σ = 11±2 nb at 95.1 MeV assumptions: σ(<sup>261</sup>Rf<sup>a</sup>) = 12 nb@JAEA
   → σ ratio(<sup>261</sup>Rf<sup>a</sup>/<sup>261</sup>Rf<sup>b</sup>) = 1.1±0.2

**Correlated α**   $E_{\alpha} = 8.18 - 8.31 \text{ MeV}$  $T_{1/2} = 22^{+14} - 6 \text{ s}$ 



#### (e) <sup>248</sup>Cm(<sup>22</sup>Ne,5*n*)<sup>265</sup>Sg<sup>*a,b*</sup>

| Beam time                          | Magnetic rigidity (Tm) | Beam dose ( $\times 10^{18}$ ) |
|------------------------------------|------------------------|--------------------------------|
|                                    | 1.73                   | 2.07                           |
| Son 20 Oct 6 2009                  | 1.94                   | 1.91                           |
| Sep. 30–Oct. 6, 2008               | 2.16                   | 1.57                           |
|                                    | 2.04                   | 0.639                          |
| Sep. 19–23, 2009; July 16–20, 2010 | 2.07                   | 11.2                           |

#### RILAC + GARIS + Gas-jet

#### AVF + Gas-jet





#### <u> $\alpha$ energy and half-life of <sup>265</sup>Sg<sup>*a,b*</sup></u>

|                                |    | This wor           | Düll                             | Düllmann and Türler (2008) |    |                    |                                  |
|--------------------------------|----|--------------------|----------------------------------|----------------------------|----|--------------------|----------------------------------|
|                                | n  | $E_{\alpha}$ [MeV] | <i>T</i> <sub>1/2</sub> [s]      | b <sub>SF</sub> [%]        | n  | $E_{\alpha}$ [MeV] | <i>T</i> <sub>1/2</sub> [s]      |
| <sup>265</sup> Sg <sup>a</sup> | 18 | 8.84±0.05          | <b>8.5</b> <sup>+2.6</sup> -1.6  | < 50                       | 20 | 8.85               | 8.9 <sup>+2.7</sup> -1.3         |
| <sup>265</sup> Sg <sup>b</sup> | 24 | 8.69±0.05          | <b>14.4</b> <sup>+3.7</sup> -2.5 | < 51                       | 24 | 8.70               | <b>16.2</b> <sup>+4.7</sup> -1.9 |





#### Decay patterns observed in the chain ${}^{265}Sg^{a,b} \rightarrow {}^{261}Rf^{a,b} \rightarrow {}^{257}No$

#### **Cross section**

Assumptions: GARIS eff. = 13%, gas-jet eff. = 50%, and gas-jet transport time = 3 s

|                                | Cross section at 118 MeV [pb]            |  |
|--------------------------------|------------------------------------------|--|
| <sup>265</sup> Sg <sup>a</sup> | <b>180</b> <sup>+80</sup> _60            |  |
| <sup>265</sup> Sg <sup>b</sup> | <b>200</b> <sup>+60</sup> <sub>-50</sub> |  |

$$\sigma(^{265}Sg^{a} + {}^{265}Sg^{b}) = 380^{+90}_{-70} \text{ pb}$$
  
$$\sigma(^{265}Sg^{a})/\sigma(^{265}Sg^{b}) = 1.3 \pm 0.5$$

## 4. Perspectives of SHE nuclear chemistry at RIKEN

- SHE studies opened by beam separation and low background condition -

**Approved experiments using the GARIS-gas-jet system** 

- Production of <sup>261</sup>Rf for chemical studies using the gas-jet transport system coupled to GARIS (H. Haba, RIKEN)
- Searching for a new Bk isotope of <sup>234</sup>Bk by <sup>40</sup>Ar-induced fusion reaction of <sup>197</sup>Au (D. Kaji, RIKEN)
- α-fine structure spectroscopy of <sup>257</sup>Rf and <sup>255g,m</sup>Lr (M. Asai, JAEA)
- Production of element 105 <sup>262</sup>Db for chemical studies using the gas-jet transport system coupled to GARIS (H. Haba, RIKEN)
- Gas phase chemistry of trans-actinide elements (H. Kudo, Niigata Univ.)
- Electrochemistry of the heaviest actinides (A. Toyoshima, JAEA)
- Gas-phase chemistry of Sg(CO)<sub>6</sub> –Establishing novel metal-organic chemistry for superheavy elements (Ch. E. Düllmann, Mainz Univ./GSI)

## **Gas-phase chemistry of Sg(CO)**<sub>6</sub>

-Establishing novel metal-organic chemistry for superheavy elements

proposed by Ch. E. Düllmann (Mainz Univ./GSI)

- Chemical synthesis and observation of Sg(CO)<sub>6</sub>
  First metal-organic compound of SHEs
- Measurement of  $-\Delta H_{ads}$  for Sg(CO)<sub>6</sub> and comparison with theory First gas-phase study of a SHE compound in a reduced oxidation state (Sg<sup>0</sup>) with  $\pi$  acceptor ligand





### <u>α-fine structure spectroscopy of <sup>257</sup>Rf and <sup>255g,m</sup>Lr</u>



Asai *et al.*, RIKEN APR **44**(2011)22.

# 5. Summary

- The gas-jet transport system has been coupled to the RIKEN gasfilled recoil ion separator, GARIS, at RILAC.
- The commissioning of the system was successful.
  <sup>169</sup>Tm(<sup>40</sup>Ar,3n)<sup>206</sup>Fr; <sup>208</sup>Pb(<sup>40</sup>Ar,3n)<sup>245</sup>Fm; <sup>238</sup>U(<sup>22</sup>Ne,5n)<sup>255</sup>No
  → Low background condition
  - $\rightarrow$  High gas-jet transport efficiency irrespectively of beam intensity
- Productions and decay properties of <sup>261</sup>Rf<sup>a,b</sup> and <sup>265</sup>Sg<sup>a,b</sup> were investigated in detail.
  <sup>248</sup>Cm(<sup>18</sup>O,5n)<sup>261</sup>Rf<sup>a,b</sup>; <sup>248</sup>Cm(<sup>22</sup>Ne,5n)<sup>265</sup>Sg<sup>a,b</sup>
- SHE studies opened by the GARIS gas-jet system were introduced.

# **Collaborators**

## **RIKEN Nishina Center**

T. Akiyama, M. Huang, D. Kaji, J. Kanaya, Y. Kudou, K. Morimoto,

K. Morita, K. Ozeki, R. Sakai, T. Sumita, Y. Wakabayashi, and A. Yoneda

<u>Osaka Univ.</u>

Y. Kasamatsu, Y. Kikutani, Y. Komori, T. Kuribayashi, K. Nakamura,

A. Shinohara, T. Takabe, Y. Tashiro, and T. Yoshimura

<u>Tohoku Univ.</u>

H. Kikunaga

<u>Niigata Univ.</u>

H. Kudo and M. Murakami

<u>Kanazawa Univ.</u>

T. Nanri, D. Suzuki, I. Yamazaki, and A. Yokoyama

<u>JAEA</u>

M. Asai, K. Nishio, K. Ooe, N. Sato, A. Toyoshima, and K. Tsukada









