Nuclear Physics Revealed by the study of Gamow-Teller excitations ガモフ・テラー遷移の研究から見える原子核物理

Yoshitaka FUJITA RCNP & Dept. Phys., Osaka Univ. つくば不安定核セミナー January 21, 2016

**Basic common understanding of β-decay and Charge-Exchange reaction

β decays : Absolute B(GT) values, but usually the study is limited to low-lying states (p,n), (³He,t) reaction at 0° : Relative B(GT) values, but Highly Excited States

** Both are important for the study of GT transitions!

:	l1B→	11C: GT tra	nsition st	trength	IS	
¹¹ B(3	He,t)	¹¹ C	Y. Fujita, et al. PRC 70, 011306(R)(20			
		Experiment	no-core shell-mod			
E_x (MeV)	$2J^{\pi}$	$(p,n)^{\mathrm{a}}$	B(GT) (³ He,t)	With T E_x (MeV)	FNI <i>B</i> (GT)	
0.0	3-	0.345(8) ^b	0.345(8) ^b	0.0	0.315	
2.000	1-	0.399(32)	0.440(22)	0.525	0.591	
4.319	5-		0.526(27)	3.584	0.517	
4.804	3-	$\int 0.961(60)^{-1}$	0.525(27)	3.852	0.741	
8 105	3-	1 0 111104	0.005(2) ^e			
0.105		(0.444(10)	0.461(23)	8 043	0.625	

¹¹ B \rightarrow ¹¹ C* GT-transition strength									
by Y. Kan									
Y. Fujita, et al. PRC 70, 011306(R)(2004). PRC 75 ('07)									
11 C	11C Experiment			no-core shell-model					
			B(GT)	B(GT) With 7		AMD			
E_x (MeV)	$2J^{\pi}$	$(p,n)^{\mathrm{a}}$	$(^{3}\mathrm{He},t)$	E_x (MeV)	B(GT)	B(GT)			
0.0	3-	0.345(8) ^b	0.345(8) ^b	0.0	0.315	0.45			
2.000	1-	0.399(32)	0.440(22)	0.525	0.591	0.48			
4.319	5-]	} 0.961(60) ^c {	0.526(27)	3.584	0.517	0.71			
4.804	3-		0.525(27)	3.852	0.741	0.68			
8.105	3-]	0.444(10)d	$0.005(2)^{e}$			0.02			
8.420	5-	$\int 0.444(10)$	0.461(23)	8.943	0.625	0.57			
Small B(GT) of 3/2 ⁻ ₃ : well reproduce 3 monomous and the second sec									
3/2 ⁻ ₃ 5/2 ⁻ ₂									

42Ca→42Sc: Shell Model Cal.: Transition Matrix Elements

TABLE VI. Results of the <u>pf-shell SM calculation</u> using the <u>GXPF1J interaction</u>. The matrix elements M(GT) of GT transitions exciting individual $J^{\pi} = 1^+$ GT states in ⁴²Sc from the g.s. of ⁴²Ca are shown for each configuration. The results are shown for all excited GT states predicted in the region up to 9.82 MeV. The notation $f7 \rightarrow f7$, for example, stands for the transition with the $v_{f_{7/2}} \rightarrow \pi_{f_{7/2}}$ type and $p_3 \rightarrow p_3$ the $v_{p_{3/2}} \rightarrow \pi_{p_{3/2}}$. The summed value of the matrix elements is denoted by $\Sigma M(GT)$ and its squared value is the B(GT), where the B(GT)values do not include the quenching factor of the SM calculation.

States in 42	States in ⁴² Sc			Configurations				Transition strengths	
E_x (MeV)	Т	$f7 \rightarrow f7$	$f7 \rightarrow f5$	$f5 \rightarrow f7$	$p3 \rightarrow p3$	$p3 \rightarrow p1$	$p1 \rightarrow p3$	$\Sigma M(GT)$	B(GT)
0.33 1+1	0	1.383	0.548	0.063	0.031	0.024	0.016	2.07	4.28
4.41	0	0.719	-0.742	-0.085	-0.079	-0.073	-0.048	-0.31	0.09
7.41	0	0.193	-0.788	-0.090	0.142	0.060	0.040	-0.44	0.19
8.62	0	-0.151	0.385	0.044	0.109	-0.071	-0.047	0.30	0.09
9.82	1	0.0	1.196	-0.137	0.0	-0.053	0.035	1.04	1.08
	_	_	Matrix	Eleme	ents ar	e in-pl	hase !		

GT-study Collaborations

Bordeaux (France) : β decay GANIL (France) : β decay Gent (Belgium) : (³He, t), (d, ²He), (γ , γ '), theory GSI, Darmstadt (Germany) : β decay, theory ISOLDE, CERN (Switzerland) : β decay iThemba LABS. (South Africa) : (p, p'), (³He, t) Istanbul (Turkey): (³He, t), β decay Jyvaskyla (Finland) : β decay Koeln (Germany) : γ decay, (³He, t), theory KVI, Groningen (The Netherlands) : (d, ²He) Leuven (Belgium) : β decay LTH, Lund (Sweden) : theory Osaka University (Japan) : (p, p'), (³He, t), theory Surrey (GB) : β decay Tokyo Science University : β decay TU Darmstadt (Germany) : (e, e'), (³He, t) Valencia (Spain) : β decay Michigan State University (USA) : theory, (t, ³He) Muenster (Germany) : $(d, {}^{2}He), ({}^{3}He,t)$ Univ. Tokyo and CNS (Japan) : theory, β decay

