Issues on beam dynamics in SuperKEKB

Demin Zhou

Division VI, Acc. Lab, KEK

With contributions from KEK: T. Ishibashi et al. Cornell: D. Sagan SLAC: Y. Cai

SuperKEKB optics meeting, Sep. 17, 2014

Outline

Updated results of MWI simulations

- Impedance model with clearing electrodes, grooved surfaces
- Paper published in proceedings of IPAC'14
- ► Hard-edge model for dipole fringe field
 - Dipole fringe map is the most complicated among fringe maps
- Benchmark of SAD and Bmad
 - Twiss functions, Transfer matrices, COD, etc.
- Future work with Bmad and SAD
 - Tracking simulations, lattice analysis, etc.

1. MWI: Impedance calculations: LER

Copper Piece

for Connection

Electrode [W, '0.1 mm]

[Al₂O₃, ^t0.2 mm]

Insulator

Clearing electrode

Ceramic Screw

Grooved surfaces

Fig. 2. Clearing electrode installed in test chamber. The electrode and the feedthrough are connected by small piece of copper.

40 mm

Ref. Y. Suetsugu et al., NIMA 598 (2009)

Ref. Y. Suetsugu et al., NIMA 604 (2009)

Tested in KEKB

1. MWI: Impedance calculations: LER

Pseudo-Green wake function

- σ_z=0.5mm
- Pumping ports and SR masks are negligible sources because of antechamber

• CSR and CWR (Wiggler radiation): CSRZ code with rectangular chamber

- 1. MWI: Impedance calculations: LER
- > Wake potential with nominal bunch length
 - σ_z=5mm
 - Main sources: Collimators, Resistive wall, ARES cavity,

Bellows, MO flanges, Clearing electrodes

• CSR and CWR are not strong if no microbunching happens

1. MWI: Impedance budget

> Impedance budget with $\sigma_z = 5/4.9$ mm:

• Loss factors, resistance and inductance are calculated at nominal bunch lengths

• Bellows, flanges and pumping ports contribute more impedance in HER than in LER

Table 2: Key parameters of SuperKEKB main rings for MWI simulations.

Parameter	LER	HER
Circumference (m)	3016.25	3016.25
Beam energy (GeV)	4	7.007
Bunch population (10 ¹⁰)	9.04	6.53
Nominal bunch length (mm)	5	4.9
Synchrotron tune	0.0244	0.028
Long. damping time (ms)	21.6	29.0
Energy spread (10 ⁻⁴)	8.1	6.37

Component -	LER			HER		
	$k_{ }$	R	L	$k_{ }$	R	L
ARES cavity	8.9	524	-	3.3	190	-
SC cavity	-	-	-	7.8	454	-
Collimator	1.1	62.4	13.0	5.3	309	10.8
Res. wall	3.9	231	5.7	5.9	340	8.2
Bellows	2.7	159	5.1	4.6	265	16.0
Flange	0.2	13.7	4.1	0.6	34.1	19.3
Pump. port	0.0	0.0	0.0	0.6	34.1	6.6
SR mask	0.0	0.0	0.0	0.4	21.4	0.7
IR duct	0.0	2.2	0.5	0.0	2.2	0.5
BPM	0.1	8.2	0.6	0.0	0.0	0.0
FB kicker	0.4	26.3	0.0	0.5	26.2	0.0
FB BPM	0.0	1.1	0.0	0.0	1.1	0.0
Long. kicker	1.8	105	1.2	-	-	-
Groove pipe	0.1	3.8	0.5	-	-	-
Electrode	0.0	0.7	5.7	-	-	-
Total	19.2	1137	36.4	29.0	1677	62.1

Ref. D. Zhou et al., IPAC14, TUPRI021

1. MWI: LER

Simulations with input of Pseudo-Green wake:

- Use Warnock-Cai's VFP solver
- Collimators are important sources in bunch lengthening
- Simulated σ_z≈5.9mm @Design bunch current
- Simulated MWI threshold is around NP_{th}=1.05E11
- Interplay between CSR and conventional wakes?

1. MWI: HER

Simulations with input of Pseudo-Green wake:

- Use Warnock-Cai's VFP solver
- Simulated σ_z≈5.8mm @Design bunch current
- Simulated MWI threshold is around NP_{th}=1.7E11
- Y. Cai's comment: CSR should not be important in

SuperKEKB (consider shielding and long bunch).

2. Dipole fringe

Question raised from debugging SAD code

- Two models found for hard-edge fringe
 - E. Forest: popular theory
 - Y. Cai: Ambiguous but likely close to reality (?)

Infinitely wide magnet

Realistic case (From SuperKEKB TDR)

2. Dipole fringe

Maxwellian solution for hard-edge dipole field
 G. Lee-Whiting et al. => E. Forest et al.

• S. Caspi et al. => M. Bassetti et al. => Y. Cai et al.

$$A_{s} = -xB(s) = -xB_{0}\theta(s).$$
$$\vec{A} = (A_{x}, 0, A_{s})$$
$$\nabla \times \nabla \times \vec{A} = 0$$
$$A_{x} = B_{0} \sum_{n=1}^{\infty} \frac{(-1)^{n}\theta^{(2n-1)}(s)}{(2n)!} y^{2n}$$
$$A_{y} = 0$$

$$A_{x} = \frac{1}{2}(x^{2} - y^{2})\sum_{p=0}^{\infty} \frac{1}{2+p}G_{1,2p+1}(s)(x^{2} + y^{2})^{p},$$

$$A_{y} = xy\sum_{p=0}^{\infty} \frac{1}{2+p}G_{1,2p+1}(s)(x^{2} + y^{2})^{p},$$

$$A_{s} = -x\sum_{p=0}^{\infty}G_{1,2p}(s)(x^{2} + y^{2})^{p}.$$

$$G_{n,2p}(s) = (-1)^{p}\frac{n!}{4^{p}(n+p)!p!}\frac{d^{2p}G_{n,0}(s)}{ds^{2p}},$$

$$G_{n,2p+1}(s) = \frac{dG_{n,2p}(s)}{ds},$$

$$A_{y} \neq 0$$

2. Dipole fringe

> Open question: which model is better?

• M. Masuzawa et al. are to help check the theory ...

$$\begin{split} H &= -(1+\delta) + \frac{1}{2(1+\delta)}(p_x^2 + p_y^2) - \left[a_s + \frac{1}{1+\delta}(p_x a_x + p_y a_y)\right] \\ a_{x,y,s} &= \frac{e}{cp_0}A_{x,y,s} \\ f &= -V_1 = -\frac{1}{2\rho(1+\delta)}p_x y^2 \qquad \qquad f = \frac{1}{8\rho(1+\delta)}(-p_x x^2 + 2p_y xy - 3p_x - 3p_y xy - 3p_y xy$$

Implemented in SAD:

$$x_{2} = x_{1} - \frac{1}{\rho(1+\delta)}y_{1}^{2},$$

$$p_{y2} = p_{y1} + \frac{1}{\rho(1+\delta)}y_{x1},$$

$$z_{2} = z_{1} + \frac{y_{1}^{2}}{2\rho(1+\delta)^{2}}p_{x2}.$$

$$f = \frac{1}{8\rho(1+\delta)} (-p_x x^2 + 2p_y xy - 3p_x y^2)$$
$$x_2 = x_1 - \frac{1}{8\rho(1+\delta)} (x_1^2 + 3y_1^2),$$
$$y_2 = y_1 + \frac{1}{4\rho(1+\delta)} x_1 y_1,$$
$$p_{x2} = \frac{1}{d} \left[p_{x1} - \frac{1}{4\rho(1+\delta)} (y_1 p_{y1} - x_1 p_{x1}) \right],$$
$$p_{y2} = \frac{1}{d} \left[p_{y1} - \frac{1}{4\rho(1+\delta)} (x_1 p_{y1} - 3y_1 p_{x1}) \right],$$
$$z_2 = z_1 + \frac{x_1^2 + 3y_1^2}{8\rho(1+\delta)^2} p_{x2} - \frac{x_1 y_1}{4\rho(1+\delta)^2} p_{y2},$$
$$d = 1 + \frac{3y_1^2 - x_1^2}{4\rho(1+\delta)^2}.$$

 $16\rho^2(1+\delta)^2$

> Parameters at IP with $\delta=0$

• In general, now Bmad agree well with SAD

Bmad: βx=0.02498209m, αx=-4.959E-5, vx=45.5299896, Dx=-4.E-8m, D'x=-8.16E-6, βy=2.941E-4m, αy=-6.791E-5, vy=43.56852721, Dy=-4.55E-9, D'y=-2.4E-7,

SAD:

βx=0.025m, αx=-1.34E-12, vx=45.53, Dx=-1.03E-13m, D'x=-3.11E-13, βy=3.E-4m, αy=-3.545E-13, vy=43.57, Dy=2.963E-15, D'y=-1.616E-12,

> Parameters at IP with δ =0.002

• In general, now Bmad agree well with SAD

Bmad:

 β_x =0.32635028E-01m, α_x =0.65882408E-01, v_x =45.536646, D_x=-0.47815350E-03m, D'_x=-0.11870747E-01, β_y =0.31470442E-03m, α_y =0.13545109E-01, v_y =43.577108, D_y=0.64778741E-06, D'_y=0.23488780E-02,

SAD:

 β_x =.032642757m, α_x =.0658513493, v_x =45.536688655, D_x=-.0004781727, D'_x=-.01190317, β_y =.00032006m, α_y =.01341448, v_y =43.57852356, D_y=6.27523687e-07, D'_y=.0022601526,

COD in X with $\delta=0$

COD in Y with $\delta=0$

3. Benchmark SAD and Bmad: sher_5764 ➤ COD in Z with δ=0

- 4. Future work with Bmad and SAD
- ► D. Sagan's seminar (Sep. 19, 13:30PM) for more details
- **To-Do list considered for SuperKEKB**
 - Bmad-to-SAD translator
 - Implement higher-order fringe maps in Bmad tracking
 - Particle tracking using Bmad including beam-beam,

space-charge, luminosity calculation, etc.

• PTC analysis of design lattices (with help from E. Forest)

> Any other requests are welcome!