

Overview of Lattice

Y. Ohnishi

The 21th KEKB Accelerator Review Committee

Outlook of Lattice

Strategy of Optics Tuning at Phase-I

Target ε_y is less than 10 pm, hopefully 5 pm.

X-ray Beam Size Monitor

Target value is less than 10 pm, hopefully 5 pm.

6 kinds of steerings are used to induce orbits for each x and y. physical dispersion β measurement based on orbit distortion measurement (η_x, η_y) (x, y) M_{6x6} Twiss parameters **M**11 $(\eta_x, \eta_{px}, \eta_y, \eta_{py})$ α_x $(\beta_x, \beta_y, \phi_x, \phi_y)$

X-Y Coupling in LER

Normal Dispersions in LER

before installing permanent magnet

after installing permanent magnet

normal dispersion (measurement) $-r_4$ 0 r_2 η_u η_x μ 0 μr_2 r_3 $-r_1$ η_{px} η_{pu} 0 μ r_1 η_y η_v 0 r_3 r_4 μ η_{pv} η_{py}

7

X-Y Coupling and Normal Dispersions in HER

X-Y coupling is well corrected.

- The vertical emittance is the most important parameter in the nanobeam scheme. The target is less than 10 pm (desired value is 5 pm).
- Lambertson leakage skew quad. field is successfully corrected by installing the permanent skew quad. in LER.
- The vertical emittance is estimated by the optics measurement data;

$$\epsilon_y = 7.2 \text{ pm in LER}, \epsilon_y = 9.1 \text{ pm in HER}$$

• The vertical emittance is also obtained from X-ray beam size monitor;

$$\varepsilon_y = \sim 10 \text{ pm in LER}, \varepsilon_y = \sim 120 \text{ pm in HER}$$

• The vertical emittance in LER is almost consistent with X-ray monitor, however the big discrepancy in HER is found. How to confirm ?

Appendix

Machine Parameters at Phase-I

Parameter	LER	HER
E [GeV]	4	7
I [mA]	890	810
n_b	1576	1576
$\mathcal{E}_{x}[nm]$	1.8	4.6
α_p	2.45x10 ⁻⁴	4.44x10 ⁻⁴
σ_δ	7.72x10 ⁻⁴	6.30x10 ⁻⁴
V_c [MV]	7.56	12.61
$U_{ heta}$ [MeV]	1.76	2.43
τ_s [msec]	23	29
σ_{z} [mm]	4.6	5.3
\mathcal{V}_S	-0.0192	-0.0251
v_x	44.555	45.572
v_y	46.595	43.589

Orbit at Lambertson Septum

Lambertson in LER

Dynamic Apertrue

