Beam-beam effect with Crab cavity

K. Ohmi MAC2007 for KEKB Mar. 19-21, 2007

Essentials of crab collision (head-on collision)

- Symmetry of the collision.
- Symmetry breaking, what degrades the luminosity.

Our operating condition Equal tune shift condition

	LER	HER
E	3.5 GeV	8
ε _x	18 nm	24 nm
Ν	8.66x10 ¹⁰	5.05x10 ¹⁰
I _b	1.39 mA	0.81 mA
Operation	1.2 mA	0.67 mA

Luminosity at the condition

• The emittance compensation is no problem.

Symmetry breaking source

- Optimization with a large number of parameters
- Offset Δx , Δy , $\Delta x'$, $\Delta y'$
- Twiss parameters, β (waist), R_{i=1,4}, $\eta_{x,y}$, $\eta'_{x,y}$ of each beam.

Tolerance for twiss parameters

• Tolerance of all parameters are individually in controllable range.

1 unit for KEKB tuning: r4=0.021, η =0.00016

Difficulty for multi-parameters optimization

Horizontal scan

This figure is meaningful.

Even the two parameters, the search of the peak seems to be hard: if residual crossing angle is 2 mrad, we can not realize the existence of the peak.

We have to arrive the peak for multi-parameter.

Beam size and H-offset

Life time and offset

• Life time may be short at H-offset 20, 40 μ m, Jx=3 μ m

Beam-beam induced Life time evaluation

- Simplified method.
- Count the number of particle outgoing from the meshed area.
- Meshed area, +- 2.5 mm x 0.05 mm.
- Ax=7.8 μm, Ay=0.36 μm.
- Actual aperture Ax~12 μ m Ay~1 μ m.

Beam loss feature

- Beam particles are lost vertical for large horizontal offset.
- Beam particles are lost horizontal for horizontal offset 50 μm.
- Electron beam is easily lost in this condition.

Beam life at 11 mrad crossing

Life time is no problem, if coherent motion does not occur

Simulation of the Crab voltage scan

• The size is minimum for no bunch tilt.

Measurement of HER voltage scan

If there is not other errors, we have a shape enhancement.

Vertical angle $\phi_y(LER) = \phi_y(HER)$: worst $\phi_y(LER) = -\phi_y(HER)$ and $\phi_y(LER) = 0$: better

Most serious issue for the crab operation

- Asymmetry for the horizontal offset
- Beam life time is very short in a region of a horizontal offset.
- We still have just like "Egure" effect even in head-on collision.
- This asymmetry can not be reproduced by the simulation.

Horizontal offset scan

- The beam current seems to be limited by the short life time of the region.
- The region is enlarged for high current.

File Edit Window 03/17/2047 11:12:03 **Retroytal Scan Cante** From (and To junj Step [um] Wait Isect Horizontal Scan Start Step Scan Display DI1-1 D11-2 -100100 Bump Height [un bani Capy

-24

HER life LER life decrases depending on the condition

Collision center given by the beam-beam kick

Beam-beam limit for us

