Resurgence and Non-Perturbative Physics: Decoding the Path Integral

Gerald Dunne

University of Connecticut

KEK Theory Conference
December 3, 2015

GD, M. Ünsal, G. Başar, 1210.2423, 1210.3646, 1306.4405, 1401.5202, 1501.05671, 1505.07803, 1509.05046, 1511.05977

GD, introductory lectures at CERN 2014 Winter School
GD, introductory lectures at Schladming 2015 Winter School
Some Physical Motivation

- improved asymptotics in QFT
- infrared renormalon puzzle in asymptotically free QFT
- non-perturbative physics without instantons: physical meaning of non-BPS saddle configurations

Bigger Picture

- non-perturbative definition of nontrivial QFT in continuum
- analytic continuation of path integrals (Lefschetz thimbles)
- dynamical and non-equilibrium physics from path integrals
Some Mathematical Motivation

Resurgence: ‘new’ idea in mathematics (Écalle, 1980; Stokes, 1850)

resurgence = unification of perturbation theory and non-perturbative physics

- perturbation theory \rightarrow divergent (asymptotic) series
- formal series expansion \rightarrow trans-series expansion
- trans-series ‘well-defined under analytic continuation’
- perturbative and non-perturbative physics entwined
- applications: ODEs, PDEs, fluids, QM, Matrix Models, QFT, String Theory, ...
- philosophical shift: view asymptotics/semiclassics as potentially exact
trans-series expansion in QM and QFT applications:

\[f(g^2) = \sum_{p=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=1}^{k-1} c_{k,l,p} g^{2p} \left(\exp \left[-\frac{c}{g^2} \right] \right)^k \left(\ln \left[\pm \frac{1}{g^2} \right] \right)^l \]

perturbative fluctuations

k–instantons

quasi-zero-modes

Écalle (1980): functions ‘closed under all operations’:

(Borel transform) + (analytic continuation) + (Laplace transform)

trans-monomial elements: \(g^2, e^{-\frac{1}{g^2}}, \ln(g^2) \), are familiar

“multi-instanton calculus” in QFT

new: analytic continuation encoded in trans-series

new: trans-series coefficients \(c_{k,l,p} \) highly correlated

new: exponential asymptotics (Olver, Kruskal, Segur, Costin, …)
Resurgence

resurgent functions display at each of their singular points a behaviour closely related to their behaviour at the origin. Loosely speaking, these functions resurrect, or surge up - in a slightly different guise, as it were - at their singularities

J. Écalle, 1980

local analysis encodes more global information than one might naively think
recap: rough basics of Borel summation

(i) divergent, alternating:
\[\sum_{n=0}^{\infty} (-1)^n \frac{n! g^{2n}}{n!} = \int_0^{\infty} dt \, e^{-t} \frac{1}{1+g^2 t} \]

(ii) divergent, non-alternating:
\[\sum_{n=0}^{\infty} \frac{n! g^{2n}}{n!} = \int_0^{\infty} dt \, e^{-t} \frac{1}{1-g^2 t} \]

⇒ ambiguous imaginary non-pert. term: \(\pm \frac{i \pi}{g^2} e^{-1/g^2} \)

avoid singularities on \(\mathbb{R}^+ \): **directional** Borel sums:

\[\theta = 0^\pm \longrightarrow \text{non-perturbative ambiguity: } \pm \text{Im}[Bf(g^2)] \]

challenge: use physical input to resolve ambiguity
Resurgent relations within Trans-series

- trans-series (neglecting logs for now for simplicity)

\[F(g^2) \sim \left(c_0^{(0)} + c_1^{(0)} g^2 + c_2^{(0)} g^4 + \ldots \right) \]
\[+ \sigma e^{-S/g^2} \left(c_0^{(1)} + c_1^{(1)} g^2 + c_2^{(1)} g^4 + \ldots \right) \]
\[+ \sigma^2 e^{-2S/g^2} \left(c_0^{(2)} + c_1^{(2)} g^2 + c_2^{(2)} g^4 + \ldots \right) \]
\[+ \ldots \]

- **basic idea:** ambiguous imaginary non-perturbative contributions from Borel summation of non-alternating divergent series in one sector must cancel against terms in some other non-perturbative sector

- implies very strong relations between trans-series expansion coefficients in different non-perturbative sectors
Hint of Resurgence in QM Spectral Problems

- QM analog of IR renormalon problem in QFT

- degenerate vacua: double-well, Sine-Gordon, ...

splitting of levels: a real one-instanton effect: \(\Delta E \sim e^{-S/g^2} \)

surprise: pert. theory non-Borel-summable: \(c_n \sim \frac{n!}{(2S)^n} \)

- stable systems
- ambiguous imaginary part
- \(\pm i e^{-2S/g^2} \), a 2-instanton effect
• degenerate vacua: double-well, Sine-Gordon, ...

1. perturbation theory non-Borel-summable:
 ill-defined/incomplete

2. instanton gas picture ill-defined/incomplete:
 \mathcal{I} and $\bar{\mathcal{I}}$ attract

• regularize both by analytic continuation of coupling

⇒ ambiguous, imaginary non-perturbative terms cancel !

“resurgence” ⇒ cancellation to all orders
Mariño, Schiappa, Weiss: *Nonperturbative Effects and the Large-Order Behavior of Matrix Models and Topological Strings* 0711.1954; Mariño, *Nonperturbative effects and nonperturbative definitions in matrix models and topological strings* 0805.3033

- resurgent Borel-Écalle analysis of matrix models

\[Z(g_s, N) = \int dU \exp \left[\frac{2}{g_s} \text{tr} V(U) \right] \]

- two variables: \(g_s \) and \(N \) (’t Hooft coupling: \(\lambda = g_s N \))

- e.g. Gross-Witten-Wadia: \(V = U + U^{-1} \)

- 3rd order phase transition at \(\lambda = 1 \), associated with condensation of instantons (Neuberger)

- double-scaling limit: Painlevé II
QFT: new source of divergence in perturbation theory

IR renormalons (pert theory): \[\rightarrow \pm i e^{-\frac{2S}{\beta_0 g^2}} \]

non-pert instantons (\(\mathbb{R}^2 \) or \(\mathbb{R}^4 \)): \[\rightarrow \pm i e^{-\frac{2S}{g^2}} \]

appears that BZJ cancellation cannot occur

asymptotically free theories remain inconsistent

't Hooft, 1980; David, 1981
resolution: there is another problem with the non-perturbative instanton gas analysis: **scale modulus of instantons**

- spatial compactification and principle of continuity
- 2 dim. \mathbb{CP}^{N-1} model: $S_{\text{inst}} \rightarrow \frac{S_{\text{inst}}}{N} = \frac{S_{\text{inst}}}{\beta_0}$

\[\text{inst} \quad \text{anti-inst} \quad \beta_0 \]

\[\text{UV renormalon poles} \quad \text{IR renormalon poles} \quad \text{neutral bion poles} \]

\[\rightarrow \quad \text{semiclassical realization of IR renormalons} \]
• 2d $O(N)$ & principal chiral model have no instantons!

• but: have non-BPS finite action solutions

• negative fluctuation modes
twisted b.c.s \rightarrow fractionalize (Cherman et al, 1308.0127, 1403.1277; GD, Unsal, 1505.07803, Nitta et al, ...): saddles = bions in resurgent structure

\[\int \mathcal{D}A \, e^{-\frac{1}{g^2} S[A]} = \sum_{\text{all saddles}} e^{-\frac{1}{g^2} S[A_{\text{saddle}]} \times (\text{fluctuations}) \times (\text{qzm})} \]

• Yang-Mills, $\mathbb{C}P^{N-1}$, $U(N)$ PCM, $O(N)$, $Gr(N,M)$, ... have ‘unstable’ finite action non-BPS saddles

• what do these mean physically?

resurgence: ambiguous imaginary non-perturbative terms should cancel ambiguous imaginary terms from Borel summation of perturbation theory

open problem: non-BPS saddle classification/fluctuations
Resurgence and Localization

Mariño, 1104.0783; Aniceto, Russo, Schiappa, 1410.5834; Wang, Wang, Huang, 1409.4967; Grassi, Hatsuda, Mariño, 1410.7658, ...)

- certain protected quantities in especially symmetric QFTs can be reduced to matrix models ⇒ resurgent asymptotics

- 3d Chern-Simons on $S^3 \rightarrow$ matrix model

\[Z_{CS}(N, g) = \frac{1}{\operatorname{vol}(U(N))} \int dM \exp \left[-\frac{1}{g} \operatorname{tr} \left(\frac{1}{2} (\ln M)^2 \right) \right] \]

- ABJM: $\mathcal{N} = 6$ SUSY CS, $G = U(N)_k \times U(N)_{-k}$

\[Z_{ABJM}(N, k) = \sum_{\sigma \in S_N} \frac{(-1)^{\epsilon(\sigma)}}{N!} \int \prod_{i=1}^{N} \frac{dx_i}{2\pi k} \prod_{i=1}^{N} 2\operatorname{ch} \left(\frac{x_i}{2} \right) \operatorname{ch} \left(\frac{x_i-x_{\sigma(i)}}{2k} \right) \]

- $\mathcal{N} = 4$ SUSY Yang-Mills on S^4

\[Z_{SYM}(N, g^2) = \frac{1}{\operatorname{vol}(U(N))} \int dM \exp \left[-\frac{1}{g^2} \operatorname{tr} M^2 \right] \]
what is the origin of resurgent behavior in QM and QFT?

to what extent are (all?) multi-instanton effects encoded in perturbation theory? And if so, why?

• QM & QFT: basic property of all-orders steepest descents integrals

• Lefschetz thimbles: analytic continuation of path integrals
• all-orders steepest descents for contour integrals:

\textit{hyperasymptotics} \quad \text{(Berry/Howls 1991, Howls 1992)}

\[I^{(n)}(g^2) = \int_{C_n} dz \, e^{-\frac{1}{g^2} f(z)} = \frac{1}{\sqrt{1/g^2}} e^{-\frac{1}{g^2} f_n} T^{(n)}(g^2) \]

• \(T^{(n)}(g^2) \): beyond the usual Gaussian approximation

• asymptotic expansion of fluctuations about the saddle \(n \):

\[T^{(n)}(g^2) \sim \sum_{r=0}^{\infty} T_r^{(n)} g^{2r} \]
All-Orders Steepest Descents: Darboux Theorem

- universal resurgent relation between different saddles:

\[T^{(n)}(g^2) = \frac{1}{2\pi i} \sum_m (-1)^{\gamma_{nm}} \int_0^\infty \frac{dv}{v} \frac{e^{-v}}{1 - g^2v/(F_{nm})} T^{(m)} \left(\frac{F_{nm}}{v} \right) \]

- exact resurgent relation between fluctuations about \(n^{\text{th}} \) saddle and about neighboring saddles \(m \)

\[T_r^{(n)} = \frac{(r - 1)!}{2\pi i} \sum_m (-1)^{\gamma_{nm}} \left(\frac{F_{nm}}{(F_{nm})^r} \right) \left[T_0^{(m)} + \frac{F_{nm}}{(r - 1)} T_1^{(m)} + \frac{(F_{nm})^2}{(r - 1)(r - 2)} T_2^{(m)} + \ldots \right] \]

- universal factorial divergence of fluctuations (Darboux)
- fluctuations about neighboring saddles explicitly related!
$d = 0$ partition function for periodic potential $V(z) = \sin^2(z)$

$$I(g^2) = \int_0^\pi dz \, e^{-\frac{1}{g^2} \sin^2(z)}$$

two saddle points: $z_0 = 0$ and $z_1 = \frac{\pi}{2}$.
All-Orders Steepest Descents: Darboux Theorem

- large order behavior about saddle z_0:

$$T^{(0)}_r = \frac{\Gamma (r + \frac{1}{2})^2}{\sqrt{\pi} \Gamma (r + 1)}$$

$$\sim \frac{(r - 1)!}{\sqrt{\pi}} \left(1 - \frac{1}{4} \frac{1}{(r - 1)} + \frac{9}{32} \frac{1}{(r - 1)(r - 2)} - \frac{75}{128} \frac{1}{(r - 1)(r - 2)(r - 3)} + \ldots \right)$$

- low order coefficients about saddle z_1:

$$T^{(1)}(g^2) \sim i \sqrt{\pi} \left(1 - \frac{1}{4} g^2 + \frac{9}{32} g^4 - \frac{75}{128} g^6 + \ldots \right)$$

- fluctuations about the two saddles are explicitly related

- could something like this work for path integrals?

- multi-dimensional case is already non-trivial and interesting

Picard/Lefschetz; Pham (1965); Delabaere/Howls (2002); ...
Resurgence in (Infinite Dim.) Path Integrals (GD, Ünsal, 1401.5202)

- periodic potential: \(V(x) = \frac{1}{g^2} \sin^2(gx) \)

- vacuum saddle point
 \[
 c_n \sim n! \left(1 - \frac{5}{2} \cdot \frac{1}{n} - \frac{13}{8} \cdot \frac{1}{n(n-1)} - \cdots \right)
 \]

- instanton/anti-instanton saddle point:
 \[
 \text{Im } E \sim \pi e^{-2\frac{1}{2g^2}} \left(1 - \frac{5}{2} \cdot g^2 - \frac{13}{8} \cdot g^4 - \cdots \right)
 \]

- double-well potential: \(V(x) = x^2(1-gx)^2 \)

- vacuum saddle point
 \[
 c_n \sim 3^n n! \left(1 - \frac{53}{6} \cdot \frac{1}{3} \cdot \frac{1}{n} - \frac{1277}{72} \cdot \frac{1}{3^2} \cdot \frac{1}{n(n-1)} - \cdots \right)
 \]

- instanton/anti-instanton saddle point:
 \[
 \text{Im } E \sim \pi e^{-2\frac{1}{6g^2}} \left(1 - \frac{53}{6} \cdot g^2 - \frac{1277}{72} \cdot g^4 - \cdots \right)
 \]
there is even more resurgent structure ...
Uniform WKB & Resurgent Trans-series

\[-\frac{\hbar^2}{2} \frac{d^2}{dx^2} \psi + V(x)\psi = E\psi\]

- weak coupling: degenerate harmonic classical vacua

⇒ uniform WKB: \(\psi(x) = \frac{D_\nu\left(\frac{1}{\sqrt{\hbar}}\varphi(x)\right)}{\sqrt{\varphi'(x)}} \)

- non-perturbative effects: \(g^2 \leftrightarrow \hbar \) \(\Rightarrow \exp\left(-\frac{S}{\hbar}\right) \)

- trans-series structure follows from exact quantization condition \(\rightarrow E(N, \hbar) = \text{trans-series} \)

- Zinn-Justin, Voros, Pham, Delabaere, Aoki, Takei, Kawai, Koike, ...

- Misumi, Nitta, Sakai, 2015
Zinn-Justin/Jentschura conjecture: generate *entire trans-series* from just two functions:

(i) perturbative expansion \(E = E_{\text{pert}}(\hbar, N) \)
(ii) single-instanton fluctuation function \(\mathcal{P}(\hbar, N) \)
(iii) rule connecting neighbouring vacua (parity, Bloch, ...)

\[
E(\hbar, N) = E_{\text{pert}}(\hbar, N) \pm \frac{\hbar}{\sqrt{2\pi N!}} \left(\frac{32}{\hbar} \right)^{N+\frac{1}{2}} e^{-\frac{S}{\hbar}} \mathcal{P}(\hbar, N) + \ldots
\]

in fact ... (GD, Ünsal, 1306.4405, 1401.5202) fluctuation factor:

\[
\mathcal{P}(\hbar, N) = \frac{\partial E_{\text{pert}}}{\partial N} \exp \left[S \int_0^\hbar \frac{d\hbar}{\hbar^3} \left(\frac{\partial E_{\text{pert}}(\hbar, N)}{\partial N} - \hbar + \frac{(N + \frac{1}{2}) \hbar^2}{S} \right) \right]
\]

\(\Rightarrow \) perturbation theory \(E_{\text{pert}}(\hbar, N) \) encodes everything!
Resurgence at work

- fluctuations about I (or \bar{I}) saddle are determined by those about the vacuum saddle, to all fluctuation orders

- "QFT computation": 3-loop fluctuation about I for double-well and Sine-Gordon:

Escobar-Ruiz/Shuryak/Turbiner 1501.03993, 1505.05115

$$DW: \quad e^{-\frac{S_0}{\hbar}} \left[1 - \frac{71}{72} \hbar - 0.607535 \hbar^2 - \ldots \right]$$

resurgence: \quad e^{-\frac{S_0}{\hbar}} \left[1 + \frac{1}{72} \hbar \left(-102N^2 - 174N - 71 \right) \right. \\
\left. + \frac{1}{10368} \hbar^2 \left(10404N^4 + 17496N^3 - 2112N^2 - 14172N - 6299 \right) + \ldots \right]$$

- known for all N and to essentially any loop order, directly from perturbation theory!

- diagrammatically mysterious ...
all orders of multi-instanton trans-series are encoded in
perturbation theory of fluctuations about perturbative vacuum

\[
\int \mathcal{D}A e^{-\frac{1}{g^2} S[A]} = \sum_{\text{all saddles}} e^{-\frac{1}{g^2} S[A_{\text{saddle}}]} \times \text{(fluctuations)} \times \text{(qzm)}
\]
Analytic Continuation of Path Integrals: Lefschetz Thimbles

\[\int \mathcal{D}A \, e^{-\frac{1}{g^2} S[A]} = \sum_{\text{thimbles } k} \mathcal{N}_k \, e^{-\frac{i}{g^2} S_{\text{imag}}[A_k]} \int_{\Gamma_k} \mathcal{D}A \, e^{-\frac{1}{g^2} S_{\text{real}}[A]} \]

Lefschetz thimble = “functional steepest descents contour”

remaining path integral has real measure:
(i) Monte Carlo
(ii) semiclassical expansion
(iii) exact resurgent analysis

resurgence: asymptotic expansions about different saddles are closely related

requires a deeper understanding of complex configurations and analytic continuation of path integrals ... gradient flow

Stokes phenomenon: intersection numbers \(\mathcal{N}_k \) can change with phase of parameters
Thimbles from Gradient Flow

gradient flow to generate steepest descent thimble:

\[
\frac{\partial}{\partial \tau} A(x; \tau) = -\frac{\delta S}{\delta A(x; \tau)}
\]

- keeps $Im[S]$ constant, and $Re[S]$ is monotonic

\[
\frac{\partial}{\partial \tau} \left(\frac{S - \bar{S}}{2i} \right) = -\frac{1}{2i} \int \left(\frac{\delta S}{\delta A} \frac{\partial A}{\partial \tau} - \frac{\delta S}{\delta A} \frac{\partial A}{\partial \tau} \right) = 0
\]

\[
\frac{\partial}{\partial \tau} \left(\frac{S + \bar{S}}{2} \right) = -\int \left| \frac{\delta S}{\delta A} \right|^2
\]

- Chern-Simons theory (Witten 2001)
- complex Langevin (Aarts 2013; ... ; Hayata, Hidaka, Tanizaki, 2015)

resurgence: asymptotics about different saddles related
Ghost Instantons: Analytic Continuation of Path Integrals

\[Z(g^2|m) = \int Dx e^{-S[x]} = \int Dx e^{-\int d\tau \left(\frac{1}{4} \dot{x}^2 + \frac{1}{g^2} s^2 (g x|m) \right)} \]

- doubly periodic potential: real & complex instantons

\[a_n(m) \sim -\frac{16}{\pi} n! \left(\frac{1}{(S_{\Pi\Pi}(m))^{n+1}} - \frac{(-1)^{n+1}}{|S_{G\bar{G}}(m)|^{n+1}} \right) \]

\[\text{without ghost instantons} \quad \text{with ghost instantons} \]

\[\text{complex instantons directly affect perturbation theory, even though they are not in the original path integral measure} \]

(Başar, GD, Ünsal, arXiv:1308.1108)
Necessity of Complex Saddles

(Behtash, GD, Schäfer, Sulejmanpasic, Ünsal (1510.00978), (1510.03435)

\[g \mathcal{L} = \frac{1}{2} \dot{x}^2 + \frac{1}{2} (W')^2 \pm \frac{g}{2} W'' \]

- \(W = \frac{1}{3} x^3 - x \rightarrow \) tilted double-well
- \(W = \cos \frac{x}{2} \rightarrow \) double Sine-Gordon
- new (exact) complex saddles (= neutral bions)
Necessity of Complex Saddles

(Schäfer, Sulejmanpasic, Ünsal (1510.00978), (1510.03435)

SUSY QM: $g \mathcal{L} = \frac{1}{2} \dot{x}^2 + \frac{1}{2} (W')^2 \pm \frac{g}{2} W''$

• complex saddles have complex action:
 $$S_{\text{complex bion}} \sim 2S_I + i\pi$$

• $W = \cos \frac{x}{2} \rightarrow$ double Sine-Gordon
 $$E_{\text{ground state}} \sim 0 - 2 e^{-2S_I} - 2 e^{-i\pi} e^{-2S_I} = 0 \quad \checkmark$$

• $W = \frac{1}{3} x^3 - x \rightarrow$ tilted double-well
 $$E_{\text{ground state}} \sim 0 - 2 e^{-i\pi} e^{-2S_I} > 0 \quad \checkmark$$

semiclassics: complex saddles required for SUSY algebra
Connecting weak and strong coupling

important physics question:

does weak coupling analysis contain enough information to extrapolate to strong coupling?

... even if the degrees of freedom re-organize themselves in a very non-trivial way?

what about a QFT in which the vacuum re-arranges itself in a non-trivial manner?

classical (Poincaré) asymptotics is clearly not enough:

is resurgent asymptotics enough?
Resurgence in $\mathcal{N} = 2$ and $\mathcal{N} = 2^*$ Theories (Başar, GD, 1501.05671)

\[-\frac{\hbar^2}{2} \frac{d^2\psi}{dx^2} + \cos(x) \psi = u \psi\]

- electric sector (convergent)
- magnetic sector
- dyonic sector (divergent)

- energy: $u = u(N, \hbar)$; ’t Hooft coupling: $\lambda \equiv N \hbar$
- very different physics for $\lambda \gg 1$, $\lambda \sim 1$, $\lambda \ll 1$
- Mathieu, Lamé encode Nekrasov-Shatashvili superpotential
Resurgence of $\mathcal{N} = 2$ SUSY SU(2)

- moduli parameter: $u = \langle \text{tr} \Phi^2 \rangle$
- electric: $u \gg 1$; magnetic: $u \sim 1$; dyonic: $u \sim -1$
- $a = \langle \text{scalar} \rangle$, $a_D = \langle \text{dual scalar} \rangle$, $a_D = \frac{\partial W}{\partial a}$
- Nekrasov-Shatashvili twisted superpotential $W(a, \hbar, \Lambda)$:
- Mathieu equation:
 $$-\hbar^2 \frac{d^2 \psi}{dx^2} + \Lambda^2 \cos(x) \psi = u \psi, \quad a \equiv \frac{N \hbar}{2}$$
- Matone relation:
 $$u(a, \hbar) = \frac{i\pi}{2} \Lambda \frac{\partial W(a, \hbar, \Lambda)}{\partial \Lambda} - \frac{\hbar^2}{48}$$
Mathieu Equation Spectrum

\[-\frac{\hbar^2}{2} \frac{d^2 \psi}{dx^2} + \cos(x) \psi = u \psi\]

- small \(N\): divergent, non-Borel-summable \(\rightarrow\) trans-series

\[u(N, \hbar) \sim -1 + \hbar \left[N + \frac{1}{2} \right] - \frac{\hbar^2}{16} \left[\left(N + \frac{1}{2} \right)^2 + \frac{1}{4} \right] - \frac{\hbar^3}{16^2} \left[\left(N + \frac{1}{2} \right)^3 + \frac{3}{4} \left(N + \frac{1}{2} \right) \right] - \ldots\]

- large \(N\): convergent expansion: \(\rightarrow\) ?? trans-series ??

\[u(N, \hbar) \sim \frac{\hbar^2}{8} \left(N^2 + \frac{1}{2(N^2 - 1)} \left(\frac{2}{\hbar} \right)^4 + \frac{5N^2 + 7}{32(N^2 - 1)^3(N^2 - 4)} \left(\frac{2}{\hbar} \right)^8 \right.\]

\[+ \frac{9N^4 + 58N^2 + 29}{64(N^2 - 1)^5(N^2 - 4)(N^2 - 9)} \left(\frac{2}{\hbar} \right)^{12} + \ldots \)
Resurgence of $\mathcal{N} = 2$ SUSY SU(2) (Başar, GD, 1501.05671)

- $N\hbar \ll 1$, deep inside wells: resurgent trans-series

$$u^{(\pm)}(N, \hbar) \sim \sum_{n=0}^{\infty} c_n(N)\hbar^n \pm \frac{32}{\sqrt{\pi} N!} \left(\frac{32}{\hbar}\right)^{N-1/2} e^{-\frac{8}{\hbar}} \sum_{n=0}^{\infty} d_n(N)\hbar^n + \ldots$$

- Borel poles at two-instanton location

- $N\hbar \gg 1$, far above barrier: convergent series

$$u^{(\pm)}(N, \hbar) = \frac{\hbar^2 N^2}{8} \sum_{n=0}^{N-1} \frac{\alpha_n(N)}{\hbar^{4n}} \pm \frac{\hbar^2}{8} \left(\frac{2}{\hbar}\right)^{2N} \frac{(2N-1)(N-1)!}{(2N-1)(N-1)!^2} \sum_{n=0}^{N-1} \frac{\beta_n(N)}{\hbar^{4n}} + \ldots$$

(Basar, GD, Ünsal, 2015)

- Coefficients have poles at O(two-(complex)-instanton)

- $N\hbar \sim \frac{8}{\pi}$, near barrier top: “instanton condensation”

$$u^{(\pm)}(N, \hbar) \sim 1 \pm \frac{\pi}{16} \hbar + O(\hbar^2)$$
Conclusions

- Resurgence systematically unifies perturbative and non-perturbative analysis
- Trans-series ‘encode’ all information, and expansions about different saddles are intimately related
- Local analysis encodes more than one might think
- Matrix models, large N, strings, SUSY QFT
- IR renormalon puzzle in asymptotically free QFT
- Multi-instanton physics from perturbation theory
- $\mathcal{N} = 2$ and $\mathcal{N} = 2^*$ SUSY gauge theory
- Hydrodynamical equations
- Fundamental property of steepest descents expansion
- Analytic continuation for path integrals