The Strong Gravity Theorem:
a universal inequality for
CFT and quantum gravity

Simeon Hellerman

based on :

S.H., arXiv:0902.2790

Theory Workshop 2009, KEK, Tsukuba, Japan, 17 March 2009
Does the landscape of 2D CFT look like this?

One logical possibility is that there is no "sharp" upper bound on Δ_1, just a random distribution that falls off quickly above $\Delta_1 \sim \frac{c+\tilde{c}}{12}$.
The landscape of holomorphically factorized 2D CFT looks like this.

We know for a fact that the landscape of holomorphically factorized CFT looks something like this. In this case, the red line lies at $\Delta_1 = 1 + \frac{c+\tilde{c}}{24}$.
We’ll show that the full landscape of 2D CFT looks like this...

Here, the red line lies at $\Delta_1 = \frac{3}{2\pi} + \frac{c + \tilde{c}}{12}$.
Introduction

In the class of 4D gravity theories, how pure can pure gravity be?
Introduction

In the class of 4D gravity theories, how pure can pure gravity be?

What is the highest scale to which the effective theory of pure gravity can be extended?
Introduction

In the class of 4D gravity theories, how pure can pure gravity be?

What is the highest scale to which the effective theory of pure gravity can be extended?

Hard to answer – we don’t know what ”quantum gravity” is, in general!
Introduction

For some gravity theories, we do know what ”quantum gravity” is:
Introduction

For some gravity theories, we do know what "quantum gravity" is: namely, those with
Introduction

For some gravity theories, we do know what "quantum gravity" is: namely, those with AdS ground state!
Introduction

For some gravity theories, we do know what "quantum gravity" is: namely, those with AdS ground state! In the case of
Introduction

For some gravity theories, we do know what "quantum gravity" is: namely, those with AdS ground state! In the case of $\Lambda < 0$,
Introduction

For some gravity theories, we do know what "quantum gravity" is: namely, those with AdS ground state! In the case of \(\Lambda < 0 \), we know that a theory of quantum gravity is the same as a
Introduction

For some gravity theories, we do know what "quantum gravity" is: namely, those with AdS ground state! In the case of $\Lambda < 0$, we know that a theory of quantum gravity is the same as a conformal field theory.
Introduction

For some gravity theories, we do know what "quantum gravity" is: namely, those with AdS ground state! In the case of $\Lambda < 0$, we know that a theory of quantum gravity is the same as a conformal field theory on the boundary of spacetime!
Introduction

For some gravity theories, we do know what ”quantum gravity” is: namely, those with AdS ground state! In the case of $\Lambda < 0$, we know that a theory of quantum gravity is the same as a conformal field theory on the boundary of spacetime!

AdS_{D+1}
Introduction

For some gravity theories, we do know what "quantum gravity" is: namely, those with AdS ground state! In the case of $\Lambda < 0$, we know that a theory of quantum gravity is the same as a conformal field theory on the boundary of spacetime!

\[
\text{AdS}_{D+1} \quad \text{[Maldacena]}
\]
Introduction

For some gravity theories, we do know what "quantum gravity" is: namely, those with AdS ground state! In the case of $\Lambda < 0$, we know that a theory of quantum gravity is the same as a conformal field theory on the boundary of spacetime!

$$\text{AdS}_{D+1} \overset{[\text{Maldacena}]}{\leftrightarrow} \text{CFT}_D$$
Introduction

For some gravity theories, we do know what “quantum gravity” is: namely, those with AdS ground state! In the case of \(\Lambda < 0 \), we know that a theory of quantum gravity is the same as a conformal field theory on the boundary of spacetime!

\[
\text{AdS}_{D+1} \overset{\text{[Maldacena]}}{\leftrightarrow} \text{CFT}_D
\]

In principle, this answers the question of the maximum mass gap among all theories of quantum gravity with \(\Lambda < 0 \).
Introduction

In practice, it doesn’t, for two reasons:
Introduction

In practice, it doesn’t, for two reasons:

First, there is no "natural definition" of the "mass gap" in finite volume – only in
Introduction

In practice, it doesn’t, for two reasons:

First, there is no ”natural definition” of the ”mass gap” in finite volume – only in infinite volume.
Introduction

In practice, it doesn’t, for two reasons:

First, there is no “natural definition” of the “mass gap” in finite volume – only in infinite volume.

So, at finite AdS radius, there’s no canonical way to read off the mass gap from the spectrum of the corresponding CFT.
Introduction

In practice, it doesn’t, for two reasons:

First, there is no ”natural definition” of the ”mass gap” in finite volume – only in infinite volume.

So, at finite AdS radius, there’s no canonical way to read off the mass gap from the spectrum of the corresponding CFT.

Second, we don’t know much about
Introduction

In practice, it doesn’t, for two reasons:

First, there is no "natural definition" of the "mass gap" in finite volume – only in infinite volume.

So, at finite AdS radius, there’s no canonical way to read off the mass gap from the spectrum of the corresponding CFT.

Second, we don’t know much about conformal field theories in general!
Introduction

In practice, it doesn’t, for two reasons:

First, there is no "natural definition" of the "mass gap" in finite volume – only in infinite volume.

So, at finite AdS radius, there’s no canonical way to read off the mass gap from the spectrum of the corresponding CFT.

Second, we don’t know much about conformal field theories in general!

That is, we know a great deal about
Introduction

In practice, it doesn’t, for two reasons:

First, there is no ”natural definition” of the ”mass gap” in finite volume – only in infinite volume.

So, at finite AdS radius, there’s no canonical way to read off the mass gap from the spectrum of the corresponding CFT.

Second, we don’t know much about conformal field theories in general!

That is, we know a great deal about special classes of CFT
Introduction

In practice, it doesn’t, for two reasons:

First, there is no ”natural definition” of the ”mass gap” in finite volume – only in infinite volume.

So, at finite AdS radius, there’s no canonical way to read off the mass gap from the spectrum of the corresponding CFT.

Second, we don’t know much about conformal field theories in general!

That is, we know a great deal about special classes of CFT – (SUSY, holomorphically factorized, integrable, ⋯)
Introduction

In practice, it doesn’t, for two reasons:

First, there is no ”natural definition” of the ”mass gap” in finite volume – only in infinite volume.

So, at finite AdS radius, there’s no canonical way to read off the mass gap from the spectrum of the corresponding CFT.

Second, we don’t know much about conformal field theories in general!

That is, we know a great deal about special classes of CFT –(SUSY, holomorphically factorized, integrable,···) – but not characteristics of the entire landscape of CFT.
AdS$_d$/CFT$_2$

Both of these difficulties are easier to deal with in two dimensional CFT. So we will try to learn the maximum mass gap for a theory of quantum gravity with $\Lambda < 0$ in three dimensions.
Both of these difficulties are easier to deal with in two dimensional CFT. So we will try to learn the maximum mass gap for a theory of quantum gravity with $\Lambda < 0$ in three dimensions.

First, there is a clean definition of the ”gap”
Both of these difficulties are easier to deal with in two dimensional CFT. So we will try to learn the maximum mass gap for a theory of quantum gravity with $\Lambda < 0$ in three dimensions.

First, there is a clean definition of the "gap" – that is, a separation between multi-graviton states, and massive bulk states.
AdS$_d$/CFT$_2$

Both of these difficulties are easier to deal with in two dimensional CFT. So we will try to learn the maximum mass gap for a theory of quantum gravity with $\Lambda < 0$ in three dimensions.

First, there is a clean definition of the ”gap” – that is, a separation between multi-graviton states, and massive bulk states.

Second, the full landscape of CFT is better understood in $D = 2$ than in any other dimension.
Both of these difficulties are easier to deal with in two dimensional CFT. So we will try to learn the maximum mass gap for a theory of quantum gravity with $\Lambda < 0$ in three dimensions.

First, there is a clean definition of the ”gap” – that is, a separation between multi-graviton states, and massive bulk states.

Second, the full landscape of CFT is better understood in $D = 2$ than in any other dimension. (Although by no means completely understood, at all.)
In three dimensional gravity, there are NO graviton states that propagate in the bulk of spacetime.
In three dimensional gravity, there are NO graviton states that propagate in the bulk of spacetime.

For $\Lambda < 0$, we have only boundary gravitons that circulate as free particles at spatial infinity.
In three dimensional gravity, there are NO graviton states that propagate in the bulk of spacetime.

For $\Lambda < 0$, we have only boundary gravitons that circulate as free particles at spatial infinity.

Each angular momentum mode with $|n| \geq 2$ can be occupied by an arbitrary number of boundary gravitons, each with energy
AdS\(_d/CFT_2\)

In three dimensional gravity, there are NO graviton states that propagate in the bulk of spacetime.

For \(\Lambda < 0\), we have only boundary gravitons that circulate as free particles at spatial infinitiy.

Each angular momentum mode with \(|n| \geq 2\) can be occupied by an arbitrary number of boundary gravitons, each with energy

\[E_n = \frac{|n|}{L} \]
In three dimensional gravity, there are NO graviton states that propagate in the bulk of spacetime.

For $\Lambda < 0$, we have only boundary gravitons that circulate as free particles at spatial infinity.

Each angular momentum mode with $|n| \geq 2$ can be occupied by an arbitrary number of boundary gravitons, each with energy

$$E_n = \frac{|n|}{L} \quad \quad L \equiv \sqrt{-\Lambda}.$$
AdS$_d$/CFT$_2$

Note: there are no dipole excitations $n = \pm 1$ of the vacuum:
AdS$_d$/CFT$_2$

Note: there are no dipole excitations $n = \pm 1$ of the vacuum: those correspond to "boosting" the vacuum, and are pure gauge.
AdS$_d$/CFT$_2$

Note: there are no dipole excitations $n = \pm 1$ of the vacuum: those correspond to "boosting" the vacuum, and are pure gauge. Adding a dipole boundary graviton to an excited state is just boosting it to a higher state of motion.
AdS$_d$/CFT$_2$

Note: there are no dipole excitations $n = \pm 1$ of the vacuum: those correspond to "boosting" the vacuum, and are pure gauge. Adding a dipole boundary graviton to an excited state is just boosting it to a higher state of motion.

In terms of the CFT$_2$
AdS$_d$/CFT$_2$

Note: there are no dipole excitations $n = \pm 1$ of the vacuum: those correspond to "boosting" the vacuum, and are pure gauge. Adding a dipole boundary graviton to an excited state is just boosting it to a higher state of motion.

In terms of the CFT$_2$, the states with boundary gravitons excited, or boosted from the rest frame, are descendant states.
AdS\(_d\)/CFT\(_2\)

Note: there are no dipole excitations \(n = \pm 1\) of the vacuum: those correspond to "boosting" the vacuum, and are pure gauge. Adding a dipole boundary graviton to an excited state is just boosting it to a higher state of motion.

In terms of the CFT\(_2\), the states with boundary gravitons excited, or boosted from the rest frame, are descendant states. The states at rest, and with no boundary gravitons excited, are primary states.
AdS$_d$/CFT$_2$

Note: there are no dipole excitations $n = \pm 1$ of the vacuum: those correspond to ”boosting” the vacuum, and are pure gauge. Adding a dipole boundary graviton to an excited state is just boosting it to a higher state of motion.

In terms of the CFT$_2$, the states with boundary gravitons excited, or boosted from the rest frame, are descendant states. The states at rest, and with no boundary gravitons excited, are primary states.

L_{-1}, \tilde{L}_{-1}:
Note: there are no dipole excitations $n = \pm 1$ of the vacuum: those correspond to "boosting" the vacuum, and are pure gauge. Adding a dipole boundary graviton to an excited state is just boosting it to a higher state of motion.

In terms of the CFT$_2$, the states with boundary gravitons excited, or boosted from the rest frame, are descendant states. The states at rest, and with no boundary gravitons excited, are primary states.

L_{-1}, \tilde{L}_{-1}:

\Leftrightarrow
AdS$_d$/CFT$_2$

Note: there are no dipole excitations $n = \pm 1$ of the vacuum: those correspond to "boosting" the vacuum, and are pure gauge. Adding a dipole boundary graviton to an excited state is just boosting it to a higher state of motion.

In terms of the CFT$_2$, the states with boundary gravitons excited, or boosted from the rest frame, are descendant states. The states at rest, and with no boundary gravitons excited, are primary states.

\[L_{-1}, \tilde{L}_{-1} : \iff \text{energy} - \text{raising boost} \]
\[L_{-n}, \tilde{L}_{-n} \]
AdS\(_d/CFT_2\)

Note: there are no dipole excitations \(n = \pm 1\) of the vacuum: those correspond to "boosting" the vacuum, and are pure gauge. Adding a dipole boundary graviton to an excited state is just boosting it to a higher state of motion.

In terms of the CFT\(_2\), the states with boundary gravitons excited, or boosted from the rest frame, are descendant states. The states at rest, and with no boundary gravitons excited, are primary states.

\[
\begin{align*}
L_{-1}, \tilde{L}_{-1} : & \iff \text{energy-} \text{raising boost} \\
L_{-n}, \tilde{L}_{-n}, \ n \geq 2 :
\end{align*}
\]
AdS$_d$/CFT$_2$

Note: there are no dipole excitations $n = \pm 1$ of the vacuum: those correspond to "boosting" the vacuum, and are pure gauge. Adding a dipole boundary graviton to an excited state is just boosting it to a higher state of motion.

In terms of the CFT$_2$, the states with boundary gravitons excited, or boosted from the rest frame, are descendant states. The states at rest, and with no boundary gravitons excited, are primary states.

$L_{-1}, \tilde{L}_{-1} : \iff$ energy − raising boost
$L_{-n}, \tilde{L}_{-n}, n \geq 2 : \iff$
AdS$_d$/CFT$_2$

Note: there are no dipole excitations $n = \pm 1$ of the vacuum: those correspond to ”boosting” the vacuum, and are pure gauge. Adding a dipole boundary graviton to an excited state is just boosting it to a higher state of motion.

In terms of the CFT$_2$, the states with boundary gravitons excited, or boosted from the rest frame, are descendant states. The states at rest, and with no boundary gravitons excited, are primary states.

L_{-1}, \tilde{L}_{-1}: \Leftrightarrow energy − raising boost

$L_{-n}, \tilde{L}_{-n}, n \geq 2$: \Leftrightarrow boundary graviton creation
AdS$_d$/CFT$_2$

Note: there are no dipole excitations $n = \pm 1$ of the vacuum: those correspond to "boosting" the vacuum, and are pure gauge. Adding a dipole boundary graviton to an excited state is just boosting it to a higher state of motion.

In terms of the CFT$_2$, the states with boundary gravitons excited, or boosted from the rest frame, are descendant states. The states at rest, and with no boundary gravitons excited, are primary states.

$L_{-1}, \tilde{L}_{-1} : \iff \text{energy} - \text{raising boost}$

$L_{-n}, \tilde{L}_{-n}, n \geq 2 : \iff \text{boundary graviton creation}$

[Witten, 2007]
AdS$_d$/CFT$_2$

The space of CFT in two dimensions is relatively well-understood.
AdS$_d$/CFT$_2$

The space of CFT in two dimensions is relatively well-understood. In certain special classes of CFT, a bound on the gap is actually known!
AdS$_d$/CFT$_2$

The space of CFT in two dimensions is relatively well-understood. In certain special classes of CFT, a bound on the gap is actually known! [Höhn, Witten]
AdS$_d$/CFT$_2$

The space of CFT in two dimensions is relatively well-understood. In certain special classes of CFT, a bound on the gap is actually known! [Höhn, Witten]

When the Hilbert space completely factorizes as a product of left- and right-moving states, then it is possible to prove the following bound:
The space of CFT in two dimensions is relatively well-understood. In certain special classes of CFT, a bound on the gap is actually known! [Höhn, Witten]

When the Hilbert space completely factorizes as a product of left- and right-moving states, then it is possible to prove the following bound:

$$h_1$$
The space of CFT in two dimensions is relatively well-understood. In certain special classes of CFT, a bound on the gap is actually known! [Höhn, Witten]

When the Hilbert space completely factorizes as a product of left- and right-moving states, then it is possible to prove the following bound:

$$h_1 \leq \text{AdS}_d/CFT_2$$
The space of CFT in two dimensions is relatively well-understood. In certain special classes of CFT, a bound on the gap is actually known! [Höhn, Witten]

When the Hilbert space completely factorizes as a product of left- and right-moving states, then it is possible to prove the following bound:

\[h_1 \leq \frac{c}{24} + 1 \]
AdS\(_d\)/CFT\(_2\)

The space of CFT in two dimensions is relatively well-understood. In certain special classes of CFT, a bound on the gap is actually known! [Höhn, Witten]

When the Hilbert space completely factorizes as a product of left- and right-moving states, then it is possible to prove the following bound:

\[
h_1 \leq \frac{c}{24} + 1
\]

\(\tilde{h}_1\)
AdS$_d$/CFT$_2$

The space of CFT in two dimensions is relatively well-understood. In certain special classes of CFT, a bound on the gap is actually known! [Höhn, Witten]

When the Hilbert space completely factorizes as a product of left- and right-moving states, then it is possible to prove the following bound:

$$ h_1 \leq \frac{c}{24} + 1 $$

$$ \tilde{h}_1 \leq $$
AdS$_d$/CFT$_2$

The space of CFT in two dimensions is relatively well-understood. In certain special classes of CFT, a bound on the gap is actually known! [Höhn, Witten]

When the Hilbert space completely factorizes as a product of left- and right-moving states, then it is possible to prove the following bound:

\[
 h_1 \leq \frac{c}{24} + 1
\]

\[
 \tilde{h}_1 \leq \frac{\tilde{c}}{24} + 1
\]
AdS$_d$/CFT$_2$

The space of CFT in two dimensions is relatively well-understood. In certain special classes of CFT, a bound on the gap is actually known! [Höhn, Witten]

When the Hilbert space completely factorizes as a product of left- and right-moving states, then it is possible to prove the following bound:

$$h_1 \leq \frac{c}{24} + 1$$

$$\tilde{h}_1 \leq \frac{\tilde{c}}{24} + 1$$

Furthermore, this is the best possible bound for holomorphically factorized CFT
AdS$_d$/CFT$_2$

The space of CFT in two dimensions is relatively well-understood. In certain special classes of CFT, a bound on the gap is actually known! [Höhn, Witten]

When the Hilbert space completely factorizes as a product of left- and right-moving states, then it is possible to prove the following bound:

$$h_1 \leq \frac{c}{24} + 1$$

$$\tilde{h}_1 \leq \frac{\tilde{c}}{24} + 1$$

Furthermore, this is the best possible bound for holomorphically factorized CFT *(not necessarily true).*
AdS$_d$/CFT$_2$

The space of CFT in two dimensions is relatively well-understood. In certain special classes of CFT, a bound on the gap is actually known! [Höhn, Witten]

When the Hilbert space completely factorizes as a product of left-and right-moving states, then it is possible to prove the following bound:

$$h_1 \leq \frac{c}{24} + 1$$

$$\tilde{h}_1 \leq \frac{\tilde{c}}{24} + 1$$

Furthermore, this is the best possible bound for holomorphically factorized CFT * (not necessarily true). The ”extremal CFT”
AdS$_d$/CFT$_2$

The space of CFT in two dimensions is relatively well-understood. In certain special classes of CFT, a bound on the gap is actually known! [Höhn, Witten]

When the Hilbert space completely factorizes as a product of left- and right-moving states, then it is possible to prove the following bound:

\[h_1 \leq \frac{c}{24} + 1 \]
\[\tilde{h}_1 \leq \frac{\tilde{c}}{24} + 1 \]

Furthermore, this is the best possible bound for holomorphically factorized CFT * (not necessarily true).

The "extremal CFT" * (may not exist)
The space of CFT in two dimensions is relatively well-understood. In certain special classes of CFT, a bound on the gap is actually known! [Höhn, Witten]

When the Hilbert space completely factorizes as a product of left- and right-moving states, then it is possible to prove the following bound:

\[h_1 \leq \frac{c}{24} + 1 \]

\[\tilde{h}_1 \leq \frac{\tilde{c}}{24} + 1 \]

Furthermore, this is the best possible bound for holomorphically factorized CFT * (not necessarily true).

The ”extremal CFT” * (may not exist) saturate this bound!
This is great,
This is great, **BUT**

\(\text{AdS}_d/\text{CFT}_2 \)
AdS\textsubscript{d}/CFT\textsubscript{2}

This is great, \textbf{BUT} it is
AdS$_d$/CFT$_2$

This is great, **BUT** it is **ONLY**
This is great, **BUT** it is **ONLY TRUE**
AdS\textsubscript{d}/CFT\textsubscript{2}

This is great, **BUT** it is **ONLY TRUE** for...
AdS$\,d$/CFT$_2$

This is great, **BUT** it is **ONLY TRUE** for holomorphically factorized CFT!
AdS\textsubscript{d}/CFT\textsubscript{2}

This is great, **BUT** it is **ONLY TRUE** for holomorphically factorized CFT!

The *generic* 2D CFT is
AdS$_d$/CFT$_2$

This is great, **BUT** it is **ONLY TRUE** for holomorphically factorized CFT!

The *generic* 2D CFT is **VERY FAR**
AdS$_d$/CFT$_2$

This is great, **BUT** it is **ONLY TRUE** for holomorphically factorized CFT!

The generic 2D CFT is **VERY FAR** from holomorphically factorized!
AdS$_d$/CFT$_2$

This is great, **BUT** it is **ONLY TRUE** for holomorphically factorized CFT!

The generic 2D CFT is **VERY FAR** from holomorphically factorized!

\[Z(\tau, \bar{\tau}) \]
AdS\textsubscript{d}/CFT\textsubscript{2}

This is great, **BUT** it is **ONLY TRUE** for holomorphically factorized CFT!

The generic 2D CFT is **VERY FAR** from holomorphically factorized!

\[Z(\tau, \bar{\tau}) \neq \]
AdS$_d$/CFT$_2$

This is great, **BUT** it is **ONLY TRUE** for holomorphically factorized CFT!

The **generic** 2D CFT is **VERY FAR** from holomorphically factorized!

$$Z(\tau, \bar{\tau}) \neq Z_{\text{RIGHT}}(\tau)$$
AdS$_d$/CFT$_2$

This is great, **BUT** it is **ONLY TRUE** for holomorphically factorized CFT!

The generic 2D CFT is **VER
Y FAR** from holomorphically factorized!

\[Z(\tau, \bar{\tau}) \neq Z_{\text{RIGHT}}(\tau) \cdot \]
AdS$_d$/CFT$_2$

This is great, **BUT** it is **ONLY TRUE** for holomorphically factorized CFT!

The **generic** 2D CFT is **VERY FAR** from holomorphically factorized!

\[
Z(\tau, \bar{\tau}) \neq Z_{\text{RIGHT}}(\tau) \cdot Z_{\text{LEFT}}(\bar{\tau})
\]
AdS$_d$/CFT$_2$

This is great, **BUT** it is **ONLY TRUE** for holomorphically factorized CFT!

The generic 2D CFT is **VERY FAR** from holomorphically factorized!

\[Z(\tau, \bar{\tau}) \neq Z_{\text{RIGHT}}(\tau) \cdot Z_{\text{LEFT}}(\bar{\tau}) \]

in general!
AdS$_d$/CFT$_2$

This is great, **BUT** it is **ONLY TRUE** for holomorphically factorized CFT!

The generic 2D CFT is **VERY FAR** from holomorphically factorized!

\[
Z(\tau, \bar{\tau}) \neq Z_{\text{RIGHT}}(\tau) \cdot Z_{\text{LEFT}}(\bar{\tau})
\]

in general!

We would like to extract the underlying principle and generalize the bound to the non-factorized
This is great, **BUT** it is **ONLY TRUE** for holomorphically factorized CFT!

The **generic** 2D CFT is **VERY FAR** from holomorphically factorized!

\[Z(\tau, \bar{\tau}) \neq Z_{\text{RIGHT}}(\tau) \cdot Z_{\text{LEFT}}(\bar{\tau}) \]

in general!

We would like to **extract the underlying principle** and **generalize** the bound to the **non-factorized** (generic)
AdS\textsubscript{d}/CFT\textsubscript{2}

This is great, **BUT** it is **ONLY TRUE** for holomorphically factorized CFT!

The generic 2D CFT is **VERY FAR** from holomorphically factorized!

\[Z(\tau, \bar{\tau}) \neq Z_{\text{RIGHT}}(\tau) \cdot Z_{\text{LEFT}}(\bar{\tau}) \]

in general!

We would like to extract the underlying principle and generalize the bound to the non-factorized (generic) case.
Modular Invariance

The underlying principle of Witten's proof is
Modular Invariance

The underlying principle of Witten's proof is modular invariance.
Modular Invariance

The underlying principle of Witten’s proof is modular invariance.

If we drop the assumption of modular invariance, then the Witten-Höhn bound is no longer true!
Modular Invariance
The underlying principle of Witten’s proof is modular invariance.

If we drop the assumption of modular invariance, then the Witten-Höhn bound is no longer true! A CFT that is NOT modular invariant displays pathologies in general:
Modular Invariance

The underlying principle of Witten’s proof is modular invariance.

If we drop the assumption of modular invariance, then the Witten-Höhn bound is no longer true! A CFT that is NOT modular invariant displays pathologies in general:

- non-quantization of angular momentum,
Modular Invariance
The underlying principle of Witten’s proof is modular invariance.

If we drop the assumption of modular invariance, then the Witten-Höhn bound is no longer true! A CFT that is NOT modular invariant displays pathologies in general:

- non-quantization of angular momentum,
- gravity without black holes,
Modular Invariance

The underlying principle of Witten’s proof is modular invariance.

If we drop the assumption of modular invariance, then the Witten-Höhn bound is no longer true! A CFT that is NOT modular invariant displays pathologies in general:

- non-quantization of angular momentum,
- gravity without black holes,
- electromagnetism without charged states,
Modular Invariance

The underlying principle of Witten’s proof is modular invariance.

If we drop the assumption of modular invariance, then the Witten-Höhn bound is no longer true! A CFT that is NOT modular invariant displays pathologies in general:

- non-quantization of angular momentum,
- gravity without black holes,
- electromagnetism without charged states, moduli without massless fields,
Modular Invariance

The underlying principle of Witten’s proof is modular invariance.

If we drop the assumption of modular invariance, then the Witten-Höhn bound is no longer true! A CFT that is NOT modular invariant displays pathologies in general:

- non-quantization of angular momentum,
- gravity without black holes,
- electromagnetism without charged states, moduli without massless fields,
- ...
Modular Invariance

The underlying principle of Witten's proof is modular invariance.

If we drop the assumption of modular invariance, then the Witten-Höhn bound is no longer true! A CFT that is NOT modular invariant displays pathologies in general:

- non-quantization of angular momentum,
- gravity without black holes,
- electromagnetism without charged states, moduli without massless fields,
- ...

From now on we will assume modular invariance.
Modular Invariance

Modular invariance imposes an infinite number of equations on the partition function:

\[
\left(\beta \partial_\beta \right)^p Z(\beta) = 0,
\]
Modular Invariance

Modular invariance imposes an infinite number of equations on the partition function:

\[
\left(\beta \partial_{\beta} \right)^p Z(\beta) = 0, \quad \text{p odd}.
\]
Modular Invariance

Modular invariance imposes an infinite number of equations on the partition function:

$$\left(\beta \partial_\beta \right)^p Z(\beta) = 0, \quad p \text{ odd}.$$

Here

$$\tau = -\bar{\tau} = \frac{i\beta}{2\pi}$$

where
Modular Invariance

Modular invariance imposes an infinite number of equations on the partition function:

\[
\left(\beta \partial_\beta \right)^p Z(\beta) = 0, \quad \text{p odd}.
\]

Here

\[
\tau = -\bar{\tau} = \frac{i\beta}{2\pi}
\]

where \(\beta \) is the inverse temperature.
Modular Invariance

Modular invariance imposes an infinite number of equations on the partition function:

\[\left(\beta \partial_\beta \right)^p Z(\beta) = 0, \quad p \text{ odd}. \]

Here

\[\tau = -\bar{\tau} = \frac{i\beta}{2\pi} \]

where \(\beta \) is the inverse temperature.
Modular Invariance

GO TO PART 2