Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications

Kentaro Kojima

Based on the work with Kenzo Inoue and Koichi Yoshioka
(Department of Physics, Kyushu University)

KEK Theory Meeting 2006 “Particle Physics Phenomenology”

Plan of the talk

- Overview
- Yukawa unification with neutrino Yukawa coupling
- SO(10) GUT with lopsided texture
Overview I: t-b-τ coupling unification in the MSSM

- MSSM allows t-b-τ Yukawa coupling unification
 \[\text{[Carena, Pokorski, Wagner (1993)]} \]

- The complete unification of third generation Yukawa couplings
 \[\Rightarrow \text{SO(10) unifications} \]

\[y_G 16_3 16_3 10_H \ni Q y_t \bar{t} H_u + Q y_b \bar{b} H_d + L y_\tau \bar{\tau} H_d \]

\[y_t (M_G) = y_b (M_G) = y_\tau (M_G) = y_G, \quad M_G \sim 10^{16} \text{ GeV} \]

MSSM renormalization group evolution

\[m_t^{\overline{DR}} (m_z) = v_H \sin \beta \ y_t^{\overline{DR}} (m_z) [1 + \Delta_t], \]

\[m_b^{\overline{DR}} (m_z) = v_H \cos \beta \ y_b^{\overline{DR}} (m_z) [1 + \Delta_b], \]

\[m_\tau^{\overline{DR}} (m_z) = v_H \cos \beta \ y_\tau^{\overline{DR}} (m_z) [1 + \Delta_\tau], \]

\[v_H \simeq 175 \text{ GeV}, \quad \tan \beta \sim \frac{m_t^{\overline{DR}}}{m_b^{\overline{DR}}} \sim O(50) \]

\[\Delta_t, \Delta_b, \Delta_\tau \text{ are weak scale SUSY threshold corrections} \]

fermion mass estimation \[\leftrightarrow\] sparticle spectrum
Overview II: large threshold corrections to m_b

$|\Delta_b|$ can be easily large as $O(1)$;

$$\Delta_b \approx \Delta_{\tilde{g}} + \Delta_{\tilde{\chi}^+} \approx \frac{\tan \beta}{50} \cdot \mu \left(1.3 M_{\tilde{g}}/I_b + 0.3 A_t/I_t\right)$$

$I_b \sim$ maximum of $[M_2^2, m_b^2]$, $I_t \sim$ maximum of $[\mu^2, m_t^2]$

[Hempfling (1994); Hall et al. (1994); Carena et al. (1994)]

- In order to achieve correct fermion masses, Δ_b must be much smaller than its naively expected size

[Hall, Rattazzi, Sarid (1994); Tobe, Wells (2003)]

- Suppression of $|\Delta_b|$ is ensured with approximate symmetries:
 - PQ sym. ($|\mu|^2 \ll M_{\text{SUSY}}^2$)
 - R sym. ($M_{1/2}^2, A^2, B^2 \ll M_{\text{SUSY}}^2$)
Overview III: difficulties in minimal SO(10)

The minimal SO(10): unification of t-b-τ Yukawa couplings, and the SO(10) symmetric soft terms at M_G:

\[m_{10}^2 \text{ (Higgs)}, \ m_{16}^2 \text{ (matter)}, \ M_{1/2}, \ A_0, \ B_0 \]

\[\tilde{m}_0^2 \equiv \frac{m_{10}^2+m_{16}^2}{2}, \ \ \ \xi \equiv \frac{m_{10}^2-m_{16}^2}{m_{10}^2+m_{16}^2} \]

\[M_A^2(M_{\text{SUSY}}) \simeq m_{H_d}(M_{\text{SUSY}})^2 - m_{H_u}(M_{\text{SUSY}})^2 - m_z(M_{\text{SUSY}})^2 \]

\[\approx [-0.18 + 0.06\xi]\tilde{m}_0^2 + 0.15M_{1/2}^2 - 0.01A_0^2 - 0.03A_0 M_{1/2} - m_z^2 \]

\[M_{1/2} \gtrsim \tilde{m}_0 \Rightarrow \text{large violation of } R \text{ sym.} \]

[\text{Bando et al.}(1992); \text{Carena et al.}(1994)]

Also μ is strongly constrained: \[|\mu|^2 \simeq -m_{H_u}^2 - m_z^2/2 \]

\[|\mu| \gtrsim M_{1/2} \Rightarrow \text{large violation of PQ sym.} \]

\[|\Delta_b| \sim O(0.5): \text{ minimal SO(10) cannot lead to correct fermion masses} \]
Sources of the splitting between $m_{H_u}^2$ and $m_{H_d}^2$ are needed.

previous approaches:
- SO(10) asymmetric non-universality [Olechowski, Pokorski (1995)]
- D-term arise from SO(10) → SU(5) × U(1) [Murayama et al. (1996)]
Our work

- Sources of the splitting between $m_{H_u}^2$ and $m_{H_d}^2$ are needed.

- To the issue, we include effects expected from neutrino properties, and consider two scenarios in SO(10) unification.
 - **tiny masses**: Yukawa unification with y_ν and seesaw mech.:
 \[m_{\nu}^{\text{eff}} \simeq \frac{y_\nu^2 \sin^2 \beta v_H^2}{M_\nu} \]
 - **large mixing**: the atmospheric large mixing comes from Y_e:
 \[Y_d \text{ and } Y_e \text{ have lopsided forms} \]

- We examined radiative EWSB, fermion masses and $b \to s\gamma$ constraint, which is severe for large $\tan \beta$.
Yukawa unification with y_ν
Yukawa unification with neutrino Yukawa coupling

- 16 rep. includes a singlet, RH neutrino

\[W = W_{\text{MSSM}} + L_i(Y_\nu)_{ij} \bar{\nu}_j H_u + \frac{1}{2} \bar{\nu}_i (M_\nu)_{ij} \bar{\nu}_j , \]

\[y_\nu \equiv (Y_\nu)_{33} = y_G , \quad (M_\nu)_{ij} \simeq M_\nu \simeq 10^{14} \text{ GeV} \]

- \(y_\nu \) alters the RG evolution

gauge couplings: very small (1-loop RGE’s are unchanged)\[\text{[Casas et al.(2001)]} \]

Yukawa couplings: b-tau mass ratio is slightly raised for fixed \(m_t^{\text{pole}} \)\[\text{[Vissani, Smirnov (1994); Allanach, King (1995)]} \]

Suppressed \(\Delta_b \) is still useful for correct fermion masses

We focus on \(y_\nu \) effects on \(M_A^2 \)
Novel way of radiative EWSB

On the up-type Higgs soft masses:

\[
16\pi^2 \frac{d m_{H_u}^2}{d \ln Q} = 16\pi^2 \left[\frac{d m_{H_u}^2}{d \ln Q} \right]_{\text{MSSM}} + |y_\nu|^2 (m_{H_u}^2 + m_{L33}^2 + m_{\tilde{L}33}^2 + |A_{\nu33}|^2)
\]

\(m_{H_u}^2\) is lowered \(\Rightarrow M_A^2\) is increased through \(y_\nu\) effects

\[
M_A^2(M_{\text{SUSY}}) \simeq m_{H_d}(M_{\text{SUSY}})^2 - m_{H_u}(M_{\text{SUSY}})^2 - m_z(M_{\text{SUSY}})^2
\]

\[
= [e_{m_s} + e_{m_d}\xi + e_{m_\nu} N^2 (1 - \xi)]\tilde{m}_0^2 + e_M M_{1/2}^2 + e_A A_0^2 + e_{AM} A_0 M_{1/2} - m_z^2
\]

- \(N^2 = m_{\tilde{\nu}}^2/m_{16}^2\): e.g. 1(16) \(\oplus\) other singlets \(\ni \tilde{\nu}_R\)

- \(m_{\tilde{\nu}}^2\) contributions can became large

- **With large \(m_{\tilde{\nu}}^2\),**

 \(M_{1/2} \ll \tilde{m}_0\) type EWSB is possible

- \(|\mu|^2 \sim -1.5\xi\tilde{m}_0^2 + 1.5 M_{1/2}^2\):

 positive \(\xi\) and large \(\tilde{m}_0\) lowers \(|\mu|\)
Parameter space analysis, fermion masses and $b \rightarrow s\gamma$ constraint

$N = 2.5$, $\mu > 0$, $M_{1/2} = 300$ GeV, $A_0 = 0$

the experimental ranges

- $m_b^{MS}(m_b) = 4.1$ to 4.4 GeV
- $2.0 \leq \mathcal{B}(b \rightarrow s\gamma) \times 10^4 \leq 4.5$

- Approximate R sym.: $M_{1/2}, |A_0|, B_0 \ll \tilde{m}_0$
- Approximate PQ sym.: $\xi > 0$ and $\tilde{m}_0/M_{1/2} \gg 1$
- Suppression of $|\Delta_b|$
- We obtain allowed values of fermion masses and $\mathcal{B}(b \rightarrow s\gamma)$
SO(10) unification with lopsided texture
SO(10) GUT with Lopsided Texture

- **Small** mixings in the V_{CKM} and **large** mixings in the V_{MNS}
- One of the attractive approaches: **highly asymmetric** Yukawa texture, referred to as “lopsided”

\[(Y_d) \sim (Y_e)^T \sim \begin{pmatrix} b & a \end{pmatrix}\]

- In SO(10) models, non-minimal field contents are useful to realize the lopsided texture: e.g. $10_H \oplus \text{(others)} \supset H_d$

 [Albright et al.(1998); Nomura, Yanagida (1999); Babu et al.(2000)]

- SO(10) unification leads quite different picture of radiative EWSB from the third generation Yukawa unifications
Higgs mixing and Fermion masses

- We consider following Yukawa matrices:

\[
(Y_u) = (Y_n) = \begin{pmatrix}
 & & \\
 & y_G & \\
& & y_G
\end{pmatrix}, \quad (Y_d) = (Y_e)^T = y_G \cos \theta \begin{pmatrix}
1 \\
1
\end{pmatrix}
\]

- \(\cos \theta \) parametrizes the \(H_d \) mixing between \(10_H \) and others

- \(Y_e \Rightarrow \) the nearly maximal atmospheric mixing angle

- For \(\theta \gtrsim 65^\circ \), \(\Delta_b < 0 \), that is \(\mu < 0 \), is needed

- In the wide range of \(\theta \), suppressed \(|\Delta_b| \) is needed to achieve correct bottom mass
The model

- The freedom of θ is a key ingredient

$$5_{H_d}^* = 5^* (10_H) \cos \theta + 5^* (16_H) \sin \theta$$

$$m_{H_u}^2 = m_0^2 + \frac{4}{5} \Delta + 2D, \quad m_{H_d}^2 = m_0^2 + \left[\frac{4}{5} \cos^2 \theta + \sin^2 \theta \right] \Delta + \left[-2 \cos^2 \theta + 3 \sin^2 \theta \right] D,$$

$$m_\tilde{u}^2 = m_\tilde{Q}^2 = m_\tilde{e}^2 = (m_0^2 + \Delta - D) \delta_{ij}, \quad m_\tilde{e}^2 = (m_0^2 + \Delta - 5D) \delta_{ij},$$

$$m_L^2 = m_d^2 = \begin{pmatrix} m_0^2 + \Delta + 3D \\ m_0^2 + \frac{4}{5} \Delta - 2D \\ m_0^2 + \Delta + 3D \end{pmatrix}$$

- Δ parametrizes gaugino dependent RG contribution between M_{pl} and M_G
Higgs mixing and radiative EWSB

\[M_A^2(M_{\text{SUSY}}) = [g_{ms} + g_{md}\xi]\tilde{m}_0^2 + g_M M_{1/2}^2 + g_A A_0^2 + g_{AM} A_0 M_{1/2} + g_D D - m_z^2, \]

- Large \(\theta \) raises \(M_A^2 \) even \(M_{1/2} \ll \tilde{m}_0 \)
- Positive D-term decreases \(|\mu|^2 \);
 \[|\mu|^2 \sim 1.5 M_{1/2}^2 - 2.0 D \]
- For \(\theta \geq 60^\circ \), approximate PQ and R symmetric spectrum is possible
Parameter space analysis

\[\theta = 65^\circ, \mu < 0, D/\tilde{m}_0 = 0.1, A_0 = 0 \]

the experimental ranges
- \(m_{b_{\overline{MS}}}^\overline{MS}(m_b) = 4.1 \text{ to } 4.4 \text{ GeV} \)
- \(2.0 \leq \mathcal{B}(b \to s\gamma) \times 10^4 \leq 4.5 \)

- Approximate PQ and R symmetric spectrum suppresses \(|\Delta_b|\)
- Correct \(m_{b_{\overline{MS}}}^\overline{MS}(m_b) \) is obtained with a small but sizable \(|\Delta_b|\)
- \(b \to s\gamma \) constraint is evaded with relatively heavy sparticles for \(\mu < 0 \)
Conclusions

- We investigated the radiative EWSB, fermion masses and $b \rightarrow s\gamma$ constraint in SO(10) models with ν effects.

- Including the y_ν effects, large m_ν^2 raises CP-odd Higgs mass, and PQ and R sym. allow small $|\Delta_b|$.

- In the model with lopsided texture, non-minimal Higgs content and down-type Higgs mixing allow PQ and R symmetric radiative EWSB with $\theta \gtrsim 60^\circ$, and thus small sizable Δ_b is achieved.

- In both cases, $m_b^{\overline{MS}}(m_b)$ and $\mathcal{B}(b \rightarrow s\gamma)$ are consistent with experiments.