Enhancement of Line Gamma Ray Signature from Bino-like Dark Matter Annihilation due to Threshold Singularity

KEK Theory Meeting 2005
"Particle Physics Phenomenology"

Yoshio Sato (Saitama University)

Collaborated with
Shigeki Matsumoto (ICRR, Univ. of Tokyo)
Joe Sato (Saitama Univ.)

in preparation
Many observations indicate the existence of non-baryonic Dark Matter (DM).

In the MSSM, the lightest neutralino is a candidate for non-baryonic DM.

\[\tilde{\chi}^0 = N_{\tilde{B}} \tilde{B} + N_{\tilde{W}} \tilde{W} + N_{\tilde{H}_1} \tilde{H}_1 + N_{\tilde{H}_2} \tilde{H}_2 \]

In many SUSY breaking scenarios, Bino-like neutralino is predicted as dark matter.
Motivation

• The viable models with Bino-like DM require “coannihilation” mechanism.

• Bino-like DM need to be nearly degenerate with NLSP, so that coannihilation is effective.

• This situation is realized by several models.

Ex. Bino-stau coannihilation region in MSUGRA, Electroweak Baryogenesis in MSSM, … and so on

\[m_{\text{SUSY}} \sim a \ m_\chi \]

\[\Omega h^2 \]

\[m_\chi(\text{GeV}) \]

Profound and Yaguna

WMAP
Dark Matter (Halo) is associated with the galaxy, and distributes spherically.

The typical velocity of DM

\[\frac{v}{c} \sim O(10^{-3}) \]

Dark Matter Searches

- Direct detection
- Indirect detection
 - Cosmic gamma rays
 - High energy neutrinos from Sun
 - Positron and anti-proton excess
We consider the case that

- dark matter is Bino-like neutralino,
- Bino is nearly degenerate with sfermion in mass,
- CP violating phase is in the sfermion mass matrix.

We found that the line gamma ray signature from Bino-like dark matter pair annihilation will be detectable by future Air Cherenkov Telescopes.
DM pair annihilation for indirect detection

- DM pair annihilation to two gammas is radiative process.

 one-loop calculation by Bergstroem and Ullio

- When CP is violated, the transition between Bino two-body state in an S-wave and sfermion-antisfermion state in an S-wave can take place.

We consider the case that the CP violating phase is only in A_T (or A_t).
Threshold Singularity

The higher-order contributions are enhanced due to threshold singularity.
Line Gamma Ray flux from the Galactic Center

parameters: $m_{\tilde{B}}$, $\delta m = m_{\tilde{f}} - m_{\tilde{B}}$, $\theta = \frac{\pi}{4}$, $\gamma = \frac{\pi}{2}$

NFW profile $\Delta \Omega = 10^{-3}$

\textbf{stau case}

\textbf{stop case}

Flux at one-loop of CP conserved case $< 10^{-14} \text{cm}^{-2} \text{sec}^{-1}$

Summary

• Line gamma ray flux from Bino-like DM pair annihilation may be enhanced due to threshold singularity.

• To realize this enhancement, in stau case, high degeneracy between Bino and stau is needed, while in stop case a few percent of degeneracy between Bino and stop is needed.

• Line gamma ray signature from Bino-like DM pair annihilation will be detectable by future experiments when CP is violated.
Back Up Side
CP Violating Phase in the Sfermion Mass Term

- **Sfermion mass matrix**

 \[
 \begin{pmatrix}
 M_L^2 + m_\tau^2 + \cos 2\beta (T_{3L} - Q \sin^2 \theta_W) m_Z^2 & m_Z^2 f_{LR}^2 \\
 m_Z^2 f_{LR}^* & M_R^2 + m_\tau^2 - \cos 2\beta Q \sin^2 \theta_W m_Z^2
 \end{pmatrix}
 \]

- **CP violating phase cannot be** in μ, but **can still be** in A_τ

- **We consider the case that the CP violating phase is only** in the A_τ
Line Gamma Ray Flux from Galactic Center

\[F_{\text{line}} = 1.9 \times 10^{-11} \text{ cm}^{-2}\text{s}^{-1} \Delta \Omega \left(\frac{100\text{GeV}}{m_{\tilde{\nu}}}\right)^2 \left(\frac{<\sigma v>}{10^{-27}\text{ cm}^3\text{ s}^{-1}}\right) \bar{J} \]

where
\[
\bar{J} \equiv \int_{\Delta \Omega} \frac{d\Omega}{\Delta \Omega} \int_{\text{line of site}} \frac{dl}{8.5 \text{ kpc}} \left(\frac{\rho}{0.3 \text{ GeV cm}^{-3}}\right)^2
\]

\[\Delta \Omega = 10^{-3} \]

\[\bar{J} = 500 \ (\text{NFW profile}) \]

\[F_{\text{line}} = 9.5 \times 10^{-12} \text{ cm}^{-2}\text{s}^{-1} \left(\frac{100\text{GeV}}{m_{\tilde{\nu}}}\right)^2 \left(\frac{<\sigma v>}{10^{-27}\text{ cm}^3\text{ s}^{-1}}\right) \]