IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 3, JUNE 2008

1631

Hardware-Based TCP Processor for Gigabit Ethernet

Tomohisa Uchida, Member, IEEE

Abstract—Transmission Control Protocol (TCP) and Ethernet
have been widely used in readout systems. These protocols are de
facto standards and have been implemented on standard operating
systems. However, some small devices, e.g., front-end devices and
detectors, are not capable of employing these protocols because of
hardware size limitations. This paper describes a TCP processor
for Gigabit Ethernet with a circuit size suitable for implementing
on a single field programmable gate array. The only peripheral
device required is a single Ethernet physical layer device. The
hardware was implemented and its TCP throughput was mea-
sured. The throughputs in both directions simultaneously were
at the upper limits of Gigabit Ethernet. A mechanism for slow
control over User Datagram Protocol (UDP) is also provided.
The processor described here allows adoption of TCP/Ethernet in
small devices that have hardware size limitations.

Index Terms—Ethernet, FPGA, TCP/IP.

I. INTRODUCTION

THERNET [1] and TCP/IP [2]-[4] have been widely used
Eand have been implemented in a variety of commodity
products (Ethernet is a trademark of Xerox Corporation). Their
ratio of performance to cost is high, which allows cost-effective
network construction. Ethernet and TCP/IP have been widely
used in current readout systems. Recently, Gigabit Ethernet has
also been used; however, software tuning is required for data
transfer at high rates over Gigabit Ethernet [5]. TCP/IP is a de
facto network protocol standard and is implemented in standard
operating systems (OS).

Many backend systems have been designed as distributed
systems using TCP/IP and Ethernet (TCP/Ethernet). An exper-
imental modular front-end system was recently designed with
TCP/Ethernet [6], [7]. However, TCP/Ethernet has not been
widely used in front-end systems. Simple processing of large
amounts of data at high rates is required for devices in such
systems. Many systems employ a bus specified in hardware.
These are monolithic one-box systems, such as VME, PCI,
CAMAC, etc., and have low flexibility. This is a disadvantage
in designing a distributed system. Use of TCP/Ethernet as an
extension bus instead of such a hardware bus would make
it possible to design a highly flexible system. However, this
has proven difficult as these devices cannot process TCP at
high rates. Generally, TCP is processed in software, and the
throughput limit of TCP is determined by the processing speed
of the software. Powerful hardware is required for processing at
high rates. It is therefore difficult to process TCP at high rates
using a CPU that can be embedded in a single chip without
peripheral devices, such as processor systems built on a Field

Manuscript received November 15, 2007; revised February 12, 2008.

The author is with the University of Tokyo, Bunkyo-ku, Tokyo, Japan (e-mail:
uchida@hep.phys.s.u-tokyo.ac.jp).

Digital Object Identifier 10.1109/TNS.2008.920264

Programmable Gate Array (FPGA) or an Application-Specific
Integrated Circuit (ASIC). A hardware-based TCP processor,
called SiTCP, has been developed to overcome this constraint.
As the hardware can be built on one chip, it is possible for
detectors to employ TCP/Ethernet. These detectors can be built
as modules with a common interface.

SiTCP has been adopted by a number of groups. One example
is the Super Kamiokande experiment, involving the develop-
ment of a next-generation readout system to be installed some
time in 2008 [6], [7]. The SiTCP in this project is optimized
for Fast Ethernet [1]. A front-end electronics integrated neutron
image-detector using a gas electron multiplier (GEM) has been
developed, which has an Ethernet port through which it trans-
fers data [8]. SiTCP for Gigabit Ethernet will be employed by
the HyperSuprime-Cam project [9] for reading data from large
Charge-Coupled Devices (CCDs). The readout module is cur-
rently under development.

II. SITCP

SiTCP is a hardware-based TCP processor for devices limited
by hardware size, such as front-end devices or detectors. The
processor has the following features: small circuit size, high-
speed data transfer with TCP, a Hardware Description Language
(HDL), simple external interfaces, and remote bus access.

SiTCP can be implemented on a single chip. The standard
communication protocols are large and complex, because the
terminal must be able to communicate with its partners in
various networks and situations. However, as detector systems
use well managed and closed networks, many management
protocols are not required in such systems, and the protocol set
can therefore be reduced. SiITCP adopts the minimum protocol
set required by a PC for communication by using standard OS
socket functions without special tuning. SiTCP can process
only one TCP connection. By reducing the protocol set, the
circuit size is sufficiently small to allow its implementation on
a single chip. For example, implementation using an FPGA
does not require an external memory device. TCP processing is
non-blocking, i.e., it is designed with pipeline-based circuits,
and receiving and transmitting are processed at the same time.
SiTCP processes TCP, IP, and Ethernet protocols. A user circuit
should process a protocol over TCP. Users can optimize the
protocol for their applications.

Simple external interfaces are employed in these systems.
Gigabit-Ethernet media independent interface (GMII) specified
by IEEE802.3 [1] is used as the interface between an Ethernet
physical layer device (PHY) and a media access controller
(MAC). Many PHY products have GMIIL. The user interface
adopts first-in, first-out (FIFO) memory, and allows simple
interface design to an external circuit. The processor is de-
signed under the assumption that communications partners will
be intelligent devices, such as PCs. In many cases, PCs run

0018-9499/$25.00 © 2008 IEEE

1632

/-Full

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 3, JUNE 2008

8
TX Data =< 8
WE —_ —>
8
3 & 5| Ariter |-=>
% EMPTY 8 MAC GMII
g < B —qep
© RX Data gt ARP/]|, 8
= RV Pa— ICMP |~ |~
Connected € €
Stop —
Qlose — <
Address (—?ﬁ
RE <€—oIl UDP
g.] (Bus
Bus I/F RD ——5
WE <—p— Cont.)
WD € System Clock = 130MHz
ACK ey
Fig. 1. Block diagram of SiTCP.
MAC
e |
1 |
TX Packet Data N
TX Packet N .
ra _ﬁ'
From Artiter | [Buffer 4K byte Framing =
| |
| 7"y
\ Stop Command : O
: MAC Flow I >§
| Control : =
: 'r MAC Pause Frame :
|
.RX Packet Data RX Packet Packet " Frame | 1
1o ARPICMP, | Buffer 4K byte Filter Detection [: ~/
TCP,UDP | |

Fig. 2. Block diagram of MAC block.

management and control programs. A remote control method
is required in many cases, for example, to configure a module
or download firmware of an FPGA using a peripheral circuit
designed by users. SiTCP has a method—called Remote Bus
Control Protocol (RBCP) in this paper—that uses User Data-
gram Protocol (UDP) [10] packets and is controlled by a PC
connected via Ethernet.

Fig. 1 shows a block diagram of SiTCP. The main data-paths
are shown. SiTCP consists of MAC, TCP, ARP/ICMP, UDP, and
Arbiter blocks. The MAC block processes the Ethernet layer and
converts data to/from MII signals. The TCP block is the main
block and processes TCP. This block controls the data interface
for an external circuit. The ARP/ICMP block processes manage-
ment packets—Address Resolution Protocol (ARP) [11] and In-
ternet Control Message Protocol (ICMP) [12]. The UDP block
processes RBCP and controls the external bus. Finally, the Ar-
biter block arbitrates and selects among transmission sources.

A. MAC Block

SiTCP supports only full-duplex mode, as half-duplex mode
is not suitable for high-speed data transfer. There are no com-

mercially available Gigabit devices that support only half-du-
plex mode. Jumbo frames, which require large-size buffers, are
not supported. These features contribute to reduction of the cir-
cuit size. Although some modern FPGAs have a built-in MAC,
they were not adopted here to avoid dependency on a specific
FPGA family. Different MACs have different control methods
and a register map in general. Thus, the circuit is strongly de-
pendent on an FPGA using a built-in MAC.

Fig. 2 shows a block diagram of the MAC block. A trans-
mitted packet is written to the TX packet buffer by the Ar-
biter block. The packet is incomplete as an Ethernet frame. The
packet is read by the Framing circuit retaining the inter-frame
gaps [1]. The Preamble and Frame Check Sequence (FCS) [1]
are added to the packet, and it is then converted to a complete
frame, which is transmitted through the GMII.

A received frame is transferred to the Frame Detection
circuit through the GMII. The circuit checks for inter-frame
gaps, searches for the start of the frame with the preamble,
and extracts the Ethernet frame from the bit sequences. The
packet filter circuit checks the FCS, then filters by destina-
tion addresses. Filtered packets that have broadcast or SiTCP

UCHIDA: HARDWARE-BASED TCP PROCESSOR FOR GIGABIT ETHERNET

1633

P NP
1 . Parameter data !
| Write Control :
! \
L}
RX data ! Parser > RAM !
From MAC 1 2K byte :
: Start Command\', | TX data
1
1 Packet ROM -
! Generator > P>
1 \ -
! P B3
: Read Control Packet Data -
| : s Arbitration
: | Sigs.
Fig. 3. Block diagram of ARP/ICMP block.
]
: Data TX request for Data Packets :
} [}
TX Data > > TX Data |
TX Buffer| . TX Cont. < - >
Froman € > To Arbiter
Ext. Devi
Xt Device Read Cont. State 1\ TX Data Packet !
: Generator !
RX Data Parser Result | TCP State o Arbitration Sigs. !
From MAC | Manager 7 To Arbiter
}

State l

TX request for Control Packets

Payload data_
Cdl

RX Cont.

RX Buffer

To an Ext. Device

\>

Fig. 4. Block diagram of TCP block.

address are written to the receive buffer except MAC pause
frames [1]. A tag that indicates its protocol—TCP, UDP, ARP,
or ICMP—is then added to the start of a frame. A MAC pause
packet is transferred to the MAC control circuit that controls
reading of the Tx Buffer circuit as specified in IEEE802.3 [1].
The Rx buffer starts to read automatically after writing has
finished. There is no flow control in this circuit. The TCP block
is a non-blocking circuit. In other blocks, a frame is discarded
by each block when it cannot be processed.

B. ARP/ICMP Block

This block processes ARP request and ICMP echo-request
packets. Other management packets are discarded. This block
generates and transmits reply packets for these. ARP requests
are essential because they are required by the PC—generally
IP sending and forwarding devices—to resolve the IP address.
ICMP echo replay is not essential. However, these packets are
useful to check the path from the PC to the SiTCP. This is known
as a PING command.

Fig. 3 shows a block diagram of the ARP/ICMP block. The
Parser circuit processes only packets that have a tag of ARP or
ICMP, and other packets are discarded. ARP and ICMP packets
are analyzed. If the packet is an ARP request or ICMP echo
request, it is written to RAM. The Parser requests generation of
a reply packet, and the Packet generator requests transmission

|
|
1
I
RX Data !
T
|
1
|

Write Cont.

to the Arbiter block. After receiving the acknowledge signal for
the request, the circuit begins to generate the packet from data in
RAM and the fixed values of protocol headers stored in ROM.
The packet is then transferred to the Arbiter block.

C. TCP Block

This is the main block of SiTCP and processes TCP acting
as a server or client. Fig. 4 shows a block diagram of the TCP
block. Table I shows user interface signals. The parser circuit
processes only packets that have a TCP tag and a destination port
number set beforehand. These packets are analyzed. The pa-
rameters of TCP, e.g., Sequential Number (SN#), Acknowledge
Number (ACK#), Window Size, Flags, and Source Port Number
[4], are extracted and transferred to the TCP state manager cir-
cuit that manages the TCP connection and requests transmis-
sion of management packets that have SYN, FIN, and RST
flags [4]. Circuits in this block except the Parser are controlled
by the manager with a TCP state. A reduced TCP state ma-
chine is adopted. Simultaneous opening and closing is not sup-
ported. However, simultaneous opening does not occur in the
client-server model, but simultaneous closing can be avoided by
system design, e.g., a predefined terminal always finishes before
another.

Fig. 5 shows a state diagram of the TCP state manager drawn
from the hardware view, and is different from a standard state

1634

4

FIN_WAIT_2
"~

Recv: ACK

TIME_WAIT
7Y

Recv: ACK

| LAST_ACK |

P Recv: CLOSE &

Send: FIN
WAIT_CLOSE

Recv: FIN
Send: ACK &

l FIN WAIT_1] Recv: CLOSE &
EMPTY
Send: FIN
Fig. 5. State diagram of the TCP manager.
TABLE I
USER INTERFACE SIGNALS
Category Signals Description
Access Control CNCTD TCP connected
OPEN Request to open a connection
STOP Request to stop writing
CLOSE Request to close a connection
TX buffer control FULL Full flag
WE Write enable
TXDATA | Write data, 8-bit width
RX buffer control EMPTY Empty flag
RE Read enable
RV Read data valid
RXDATA | Read data, 8-bit width

diagram of TCP found in textbooks (for example [4]). Transi-
tion criteria are shown as “Recv” These transitions occur by re-
ceived packets or signals. “Recv: ACK” means that the manager
received the TCP packet with the ACK flag. Actions are rep-
resented as “Send”. OPEN, CLOSE, and STOP are signals of
the user interface. EMPTY is an empty flag signal of the trans-
mission buffer. Only normal transitions are represented and ab-
normal transitions are omitted. If abnormal conditions are de-
tected, the manager sends an RST packet and the state goes
to TIME_WAIT from all states. This is followed by a wait for
the Maximum Segment Lifetime (MSL) [4] and it then goes to
IDLE, which is the Initial state. Timeout criteria are summarized
in Table II.

The TX controller will be active in ESTABLISHED and
WAIT_CLOSE. There is a transmission buffer in this circuit,
and its size is selectable as 8, 16, 32, or 64 Kbytes. There is
a FIFO memory buffer for an external circuit. The external
circuit can write data to the buffer when CNCTD is active,
STOP is inactive, and FULL is inactive. If FULL is asserted,
the external circuit should stop writing within 8 clocks. SiTCP
uses a buffering algorithm; when data length is over the
Maximum Segment Size (MSS) [4] or there is no writing
over a period of 4 ms, the controller requests transmission of
data to the Packet Generator circuit. Use of this function is
selectable. The data length of transmission is calculated by

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 3, JUNE 2008

Timeout
MSL

NAS A08Y

NAS ‘puss
N3dO A8y

MOV 8 NAS :puss

-4 A4

[synN_RcvD| (sYN_senT]

EMPTY

STOP

1 ESTABLISHED
TABLE II
CONFIGURATION PARAMETERS OF TCP

Parameters Description
WAIT PORT NUMBER | Waiting port number
TX_BUF_SIZE Transmission buffer size of TCP

Selectable 8, 16, 32, 64 Kbytes

RX BUF_SIZE Receiving buffer size of TCP

Selectable 0, 8, 16, 32, 64Kbytes
Transmission buffering algorithm, ON/OFF
Send keep-alive packets, ON/OFF

Interval time to sent keep-alive packets when
the Tx buffer is empty

Interval time to sent keep-alive packets when
the Tx buffer is empty

Timeout for opening a connection

Timeout for a connection established
Timeout for a retransmission

TX BUF_ALGRSM
KEEP_ALIVE
KEEP_INTRVL _EMPTY

KEEP_INTRVL FILL

TOUT _OPEN
TOUT ESTBLSH
TOUT _RETRNS

FAST RTRNS Fast retransmission algorithm, ON/OFF

MSS Initial Maximum-Segment-Size. The MSS
used in communication is determined by
exchanging TCP options. (see [4])

MSL Maximum Segment Lifetime. Equivalent to

the minimum interval time between

connections

Length = MIN (LastSN# — Last ACK#, MSS); here Last
SN# is the last sent SN#, Last ACK# is the last received ACK#,
and MSS is the max segment size. Data corresponding to the
SN# are transmitted. If the difference between the sent SN#
and the last received ACK# is equal to the last received window
size, the transmission is stopped and the system waits to receive
a new ACK#. If a timeout occurs upon receiving no ACK,
the retransmission process is started. SiTCP also supports
fast-retransmission. If three duplicate ACK# are received, the
process is also started. The retransmission process sets SN#
to the last ACK#. The circuit transmits one packet, and then
waits for a new ACK packet. If the ACK packet is received, the
transmission process is restarted.

The RX controller will be active in ESTABLISHED,
FIN_WAIT_1, and FIN_WAIT_2. There is a buffer in this cir-
cuit, and its size is selectable as 0, 8, 16, 32, or 64 Kbytes. This

UCHIDA: HARDWARE-BASED TCP PROCESSOR FOR GIGABIT ETHERNET

TABLE III
BUS INTERFACE SIGNALS
Signals Description
ADDRESS 32-bit width address
RD 8-bit width read data
WD 8-bit width write data
RE Read enable
WE Write enable
ACK Access acknowledge from target bus
devices. In read accesses, valid read data.
Bit 7 0 CMD field
Ver. Type Bit | Name Description
cMDp | FLAG 3 |Access Bus Access
D 2 R/W 0: Write, 1:Read
1 Reserve | Always 0
Data Length 0 |Reserve |AlwaysO0
Address [31:24]
FLAG field
Address [23:16]
Bit | Name Description
Send Order | Address [15:8] REQ/ACK | 0: Request,
Address [7:0] 3 1: Acknowledge
Data 0 2 |Reserve |AlwaysO0
1 Reserve | Always 0
Data N 0 Error 0: Normal,
1: Bus Error

Fig. 6. Packet format of RBCP.

is a FIFO memory buffer for an external circuit. The external
circuit can read data from the buffer when CNCTD is active
and EMPTY is inactive. The external circuit reads data with
RE, and then read data, RD, and read valid, RV, are asserted.
The length that can be written in the buffer is the value of the
sending window. When a capacity of O bytes is selected, the
window size is fixed to 64 Kbytes and RE is not used. RD and
RV are asserted automatically.

The packet generator generates TCP packets on requests from
the TCP state manager, the TX controller, and the RX controller.

Configurable parameters of TCP are summarized in Table II.
Users can design the parameters to be fixed or variable, because
these are defined in signal lines. The variable design can be re-
alized using an additional circuit for parameter registers and the
bus control functions described in the next section.

D. UDP Block

UDP is used to control the bus from a remote terminal. RBCP
encapsulated in UDP packets was originally defined for this pur-
pose. RBCP accesses the bus with a request-acknowledgement
method. A PC as an initiator sends a request packet (RREQ).
The SiTCP accesses the bus and in turn replays an acknowledge-
ment packet (RACK) to the PC. As UDP is not a reliable pro-
tocol, packets are sometimes lost. The initiator program man-
ages this loss and should have a timeout function to detect such
losses. The bus signals are summarized in Table III. All signals
are synchronized to the system clock.

Fig. 6 shows the RBCP packet format. Ver. and Type fields
are reserved for future use. The value is OxFF in the current ver-
sion. The CMD field indicates command/action for target/ini-
tiator in RREQ/RACK, and the FLAG field indicates the results

1635

of an access. A bus-error occurs on bus timer expiry due to a no
response from bus-target devices. The ID field is used for iden-
tifying the RACK corresponding to a given RREQ. The RACK
has the same ID number as the RREQ. The LENGTH field in
RREQ indicates the data length to access. In the RACK, the field
is the data length accessed normally. The ADDRESS field in-
dicates the start bus-address. DATA fields are read data or write
data. RREQs for read-accesses do not have this field. DATAOQ are
data corresponding to the start address. The fields in RACKSs are
the normal data accessed.

Fig. 7 shows a block diagram of the UDP block. The parser fil-
ters UDP packets according to their tags, and transfers a packet
with a port number set beforehand in the UDP header to the
RBCP parser. This block processes RBCP packets one by one.
When the Data Buffer is occupied by a packet, receiving packets
are discarded. The RBCP parser analyzes the packet and extracts
parameters for bus accesses. The circuit requests an access to
the Direct Memory Access Controller (DMAC) with the param-
eters. The DMAC transfers data from/to a bus-target to/from a
data buffer. After the end of accesses, the DMAC requests trans-
mission from the Packet Generator. The generator generates a
RACK and transfers it to the Arbiter block.

E. Arbiter Block

This block arbitrates the transmitters. Arbitration signals are
of the handshake type. The priority of arbitration is from the
highest, ARP/ICMP, UDP, TCP block. Checksums in the pro-
tocol headers of IP, TCP, and UDP are calculated in this block.

III. IMPLEMENTATION

To evaluate SiTCP, it was implemented on an FPGA using
a Xilinx ML403 as an FPGA test board [13]. Fig. 8 shows the
block diagram of the test circuit. The main parts were PHY
(Marvell Alasaka 88E1111), FPGA (Xilinx XC4VFX12-10C),
and the RS232C transceiver. The test circuit consisted of 6
blocks. SiTCP, Test data generator, Test data checker, and Rate
monitor blocks were implemented in the FPGA, and SiTCP
worked in client or server mode. Its TCP buffer sizes were
32 Kbytes for TX and O bytes for RX. The generator block
generated incremented sequence numbers with a width of 32
bits. The checker block checked receiving data. As this block
was non-blocking, the TCP buffer for receiving was set to
zero bytes. When an error was found, the block turned on an
LED. The Rate Monitor sampled the last received ACK# and
the last sent ACK# at intervals of 200 ms, and the sampled
numbers were sent to a PC through RS232C for performance
measurements.

Table IV shows the implementation results of the FPGA
generated Xilinx ISE8.2i. The number of logic-resources
used—Number of Slices (Used) in this figure, where a Slice
consists of two 4-input look-up tables and two flip-flops, and
is nearly equivalent to two Logic Elements (LE) in ALTERA
devices [14]—was 3111 Slices (28%). This size is sufficient to
implement user circuits with SiTCP on one FPGA.

IV. MEASUREMENT AND RESULTS

Transfer performance was confirmed with the test circuit.
Fig. 9 shows the experimental setup. The SiTCP and PC2, which

1636

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 3, JUNE 2008

UDP (Bus Controller)

- PacketData _ Transfer Request | -
From MAC | UDP / . RBCP /\ Address | ;E
> rd T - =
RX Packet | Parser Parser X g
| [}
Dat ! =
! Buffer Cont. DMAC |e = —3> O
| \ 1 o
: Data Buffer | 2
" <.
| 2 kbyte 4'\é’ 1 §
! 1
] Buffer Cont, 1" RWData | _ Request |
! WyRead Data v |
! TXData ! . o
I Packet RS
| Generator < Arbitration Sigs. S g
| | o
| N =
Fig. 7. Block diagram of UDP block.
FPGA Evaluation Board (Xilinx ML403) PC1
"FPGA” ™ T T T 1~ h
1 Xilinx XC4VFx12 | Rate RS232C
Monitor Transceiver
' T PC2
1 SN and ACK #
1 Open Req.
' i P a RS232C
1 —l
1 |
' L
: : Close Req.
1 . 1
i| Test Data | 1X Datay| SITCP 1
(1X Data,
Il Generator ! PHY h e I s
Marvell Alaska | 1000BASE-T " Coar
: Test Data | RX Data 88E1111 SiTCP-Server
: Checker Fig. 9. Measurement setup between PCs.
Fig. 8. Block diagram of test circuit. 1000
TABLE IV 800
FPGA IMPLEMENTATION RESULTS)
3
ry £ 600
Logic Utilization Available |Utilization "é
Number of Slice Flip Flops 10944 28%)
DCM autocalibration logic 3,111 1% 3 400
Number of 4 input LUTs 10944 23% ﬁ
DCM autocalibration logic 2,556 1% 200
Logic Distribution
Number of occupied Slices 2,285 5,472 4% 0
Number of Slices containing only related logic 2,285 2,285 100% 0 200 400 600 800
Number of Slices containing unrelated logic 0 2,285 0% El 4T (s)
Total Number 4 input LUTs 3015 10944 27% apsed fime s
Number used as logic 2336 Fig. 10. TCP throughput from SiTCP to the PC as a function of elapsed time.
Number used as a route—thru 320
Number used as 16x1 RAMs 8
Number used as Shift registers 131
Number of bonded I0Bs 39 320 12%| Cache, 1.86 GHz, 1066 MHz FSB) running Scientific Linux
Number of BUFG/BUFGCTRLs 6 32 18% CERN SLCrelease 4.5. PC1 receives ACK# from the Rate Mon-
Number used as BUFGs 6 itor circuit. A simple program, which only reads the socket and
Number used as BUFGCTRLs 0 hecks th .. dat d with ter tuni
Number of FIFO16/RAMB16s 22 % 61% checks the .recel.vmg ata, was use wilhh no parameter tuning.
Number used as FIFO16s 0 The MSS in this measurement is 1460 bytes, or 1518 bytes
Number used as RAMB16s 22 length in an Ethernet frame.
Number of DCM.ADVs 2 4 0% Fig. 10 shows the throughput as a function of elapsed time.

were connected directly with a crossover cable, acted as a TCP
server and a TCP client, respectively. Forwarding devices were
not used to avoid any influence on performance. PC2 was a
DELL PowerEdge SC1430 Dual Core Xeon 5120 (4 MB L2

The vertical axis shows throughput of user data and the hori-
zontal axis shows elapsed time from establishment of the con-
nection. The throughput was calculated from ACK# received
from the rate-monitor every 200 ms. Fig. 11 shows the distribu-
tion of throughputs. SiTCP transfers data to PC2 at 949 Mbps.

UCHIDA: HARDWARE-BASED TCP PROCESSOR FOR GIGABIT ETHERNET

5000

4000 -]

3000

Count

2000

1000

0 1 1 L 1 Il _mmmm | L 1
942 943 944 945 946 947 948 949 950 951

Throughput (Mb/s)

Fig. 11. TCP throughput distribution from SiTCP to the PC as average
throughput every 200 ms.

PC1

RS232C

SiTCP-Client

Fig. 12. Measurement setup between SiTCPs.

SiTCP-Server

Throughput was measured in both directions using this setup at
the same time, and the results were about 60% of 949 Mbps.
This was thought to be due to the technique used in coding.
However, studying the coding technique was not the aim of this
study.

To measure throughput in both directions at the same time,
two SiTCPs were used. The setup is shown in Fig. 12. Constant
throughput of 949 Mbps was measured in both detections si-
multaneously, corresponding to the limit of TCP using Gigabit
Ethernet calculated with overheads, such as protocol headers.

1637

V. CONCLUSION

A hardware-based TCP processor (SiTCP) was developed,
which requires only one external device—an Ethernet PHY
device. No other devices are required. Its circuit size, about
3000 slices, is small enough to allow implementation together
with user circuits on a single FPGA. Throughput of user data is
949 Mbps in both directions, which is the limit of TCP using
Gigabit Ethernet.

SiTCP is enabling small devices to adopt TCP/Ethernet.
SiTCP will contribute to modular and distributed system
design.

REFERENCES

[11 Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
Access Method and Physical Layer Specifications, IEEE Standard
802.3, 2003.

[2] “Transmission control protocol,” Internet Engineering Task Force
RFC793, Sep. 1981.
[3] “Internet protocol DARPA Internet program protocol specification,” In-

ternet Engineering Task Force RFC791, Sep. 1981.

[4] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols.
Reading, MA: Addison-Wesley, 1994.

[5] M. Kozlovszky et al., “Analysis of STCP and TCP based commu-
nication in high speed clusters,” in Proc. NIMA, 2006, vol. 559, pp.
85-89.

[6] H. Nishino et al., “Development of new data acquisition electronics
for the large water Cherenkov detector,” in Proc. IEEE NSS, 2006, pp.
124-127.

[7]1 H. Nishino et al., “The new front-end electronics for the super-
Kamiokande experiment,” in Proc. IEEE NSS, 2007, pp. 127-132.

[8] S. Uno et al., “Development of Neutron Gaseous detector with GEM,”
in Proc. IEEE NSS, 2007, pp. 4623-4626.

[9] S. Miyazaki et al., “HyperSuprime: Project overview,” in Proc. SPIE,
2006, pp. 9-16.

[10] “User datagram protocol,” Internet Engineering Task Force RFC768,
Aug. 1980.

[11] “An ethernet address resolution protocol or converting network pro-
tocol addresses to 48.bit ethernet address for transmission on ethernet
hardware,” Internet Engineering Task Force RFC826, Nov. 1982.

[12] Internet control message protocol DARPA Internet program protocol
specification Internet Engineering Task Force RFC792, Sep. 1981.

[13] ML401/ML402/ML403 Evaluation Platform User Guide, XILINX
Inc., UG080(v2.2), Nov. 2005.

[14] Stratix Device Handbook: Stratix Architecture,
UG080(v2.2), Jul. 2005.

XILINX Inc.,

