

2017.3.13 タンパク質結晶構造解析ユーザーグループミーティング

体制

Contents

- ビームラインの現状
- 今後の予定

留保ビームタイムの配分状況

		1A	5A	17A	NW12A	NE3A	合計
2015年	開放	2	10	2	8	17	39
5月-6月期	希望	2	6	6	5	12	31
	配分	2	7	2	7	10	28
	配分率						90%
2015年	開放	6	2	13	23	9	53
10月-12月期	希望	2	0	7	6	0	15
	配分	2	0	7	5	2	16
	配分率						107%
2016年	開放	2	3	1	7	0	13
2月-3月期	希望	4	12	3	14	0	33
	配分	2	3	1	7	0	13
	配分率						39%
2016年	開放	7	19	16	11	12	65
5月-6月期	希望	2	10	17	4	5	38
	配分	2	7	6	3	2	20
	配分率						53%
2016年	開放	3	10	6			19
11月–12月期 	希望	3	25	21			49
	配分	2	10	6			18
	配分率						37%
2017年	開放	2	1	4			7
2月-3月期	希望	11	11	41			63
	配分	2	1	4			7
	配分率						11%

単位:シフト(8時間)

2016年3月以降の主な整備状況

- BL-1A: 2台のEiger検出器を用いた測定
- BL-17A: in-situ測定システムの高度化
- BL-5A: 検出器更新(Q315r -> Pilatus2M, 今年度のみ)
- サンプルピンのバーコード読み対応(PAM-HC)
- X線センタリング用インターフェース

X線検出器の現状

	BL-1A	BL-5A	BL-17A	NW12A	NE3A
2014.10 -	Pilatus2MF	Q315r	Pilatus3 6M	Q210r	Q270
2015.5 -	Eiger X4M	Q315r	Pilatus3 S6M	Q270	Pilatus2MF
2016.10 -	Eiger X4M	Pilatus2MF	Pilatus3 S6M	Q270	-
2017.4 -	Eiger X4M	Q315r	Pilatus3 S6M	Q270	Pilatus2MF

PDIS次期プロジェクトにおいて更新予定

Eiger: HDF5データファイルの処理

- XDS, HKL2000(v714)がHDF5ファイルに対応
- CBFフォーマットへの自動変換を停止する予定 (2017.4より)

BL-1A: Detector support for two Eiger detectors

MR-native SAD/ native SAD 測定において高分解能データを精度よく測定する

Native SAD phasing with λ =3.3Å

Data Statistics

Automated structure solution

BL-17A: In-situ測定環境

Two goniometer heads Horizontal gonio.: Cryo pin Vertical gonio.: Plate

Users can switch two modes by software whenever they want.

Any SBS plate can be handled.

- In-Situ01
- CrystalQuick X
- KEK
- MRC-2
- Violamo
- Intelli plate
- •••

データセット収集

幅20 umの結晶からのIn-situデータ収集

MRによる構造解析結果

XDS \downarrow XSCALE \downarrow Phaser-MR \downarrow Autobuild \downarrow Phenix.refine

PDIS次期プロジェクト

創薬等ライフサイエンス研究のための相関構造解析 プラットフォームによる支援と高度化 (FY 2017 – 2021)

放射光PX, SAXSに加えcryoEM, NMRを相関構想解析の柱に

PFにおける支援と高度化

- ビームタイムの供出(2017.11以降)。全ビームタイムの20%程度。
- X線検出器の高度化。CCD -> PAD
- 新型サンプルチェンジャーの開発。1~3年目で試作、以降 順次ビームラインへ導入。
- データベースシステム (PReMo) の高度化

新しい施設利用制度

		単価/時
ビーム	ムライン使用	53,550
代行測定	リモートアクセスによる測定	
	全自動測定	
	簡易手動測定	
	手動測定	
	サンプルチェンジャー使用しない測定	
	In-situ回析計を用いた測定	
	PXSを用いた1次スクリーニング	
	及びIn-situ回析計を用いた測定	
	PXSを用いた2次スクリーニング	
	及びIn-situ回析計を用いた測定	
解 析	回析データセット処理	
	In-situ回析データセット処理	
	クライオ条件検討	
	Native-SAD構造解析	

- 検出器、解析クラスタとファイルストレージ間のネットワーク高速化
- ネットワーク全体の安定化

回折データの自動処理

解析クラスタの増強

	2017年3月まで	2017年4月以降
ノード数	8	14
総CPUコア数	256	544
総メモリ容量 (GB)	256	1,024
ネットワーク	1 Gbps	10 Gbps

回折データ自動処理・解析 (NSLS-IIとの共同研究)

XDS

- ・ 自前のスクリプト -> fast_dp改良版 他のパイプラインに順次対応
 - DIALS (Xia2), AutoPROC, ...
 - SHELXC/D/E
 - DIMPLE

NW12A:レーザーブースの設置

建設前

建設後

オフラインレーザーシステムは4-5月で調整後、秋のビームタイムから公開予定

ノーリーの江塚		
発振波長	強度	_
Multiline UV	0.05 W	
476.5 nm	0.1 W	
488.0 nm	0.25 W	
514.5 nm	0.25 W	
520.8 nm	0.13 W	
530.9 nm	0.13 W	
568.2 nm	0.15 W	
647.1 nm	0.25 W	
Aultiline 'Whitelight'	2.5 W	

ᆔᄮ

- 発振波長は、紫外領域から650 nm付近 までの波長をカバーしており、様々な タンパク質にラマン分光測定を適用可 能
 - 高強度の白色光も出力でき、結晶の吸 収分光も可能

NW12A:顕微分光装置の開発

上記オンラインシステムの案を基に、オフライン測定系の開発を行っている。

AR-NE3A: 液体窒素滴下装置

2017年10月以降公開予定

http://www.mitegen.com/ mic_catalog.php?c=iceoff

オフライン環境でのテスト

試料交換システム:トングの急速乾燥

・ 強力なヒーターで霜の混入を防止

0'00" 0'30" 1'00" 1'11" 38℃のお湯だと1'11"、 60℃だと36"で氷が消える。

40℃のお湯で1分、水滴吹き飛ばしで1分。8分→2分へ短縮!

- スキャン動作の高速化
- 評価システムの高速化

20µm beam, 10Hz スキャン(4倍速)

- 回折センタリングを利用した全自動測定
- 結晶の位置を自動登録し各位置でsmall wedgeで データ収集を行う