Status of JSNS² (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source)

Takasumi Maruyama (KEK) for the JSNS² collaboration

SNS² collaboration

JAEA

KEK

Kyoto Osaka

Tohoku

Kitasato

Soongsil Chonbuk Nat' Dongshin Kyungpook GIST Sungkyunkwan Seoyeong Seoul Nat' of Chonnam Nati' sci and tech Seoul Nati'

Alabama

BNL

Florida Michigan **21 instituțions**

54 members

indication of the sterile neutrino ($\Delta m^2 \sim 1 eV^2$) ?

 Anomalies, which cannot be explained by standard neutrino oscillations for ~20 years are shown;

Experiments	Neutrino source	signal	significance	E(MeV),L(m)	Now it is time to	
LSND	μ Decay-At-Rest	$\overline{v}_{\mu} \rightarrow \overline{v_{e}}$	3.8σ	40,30	recheck LSND	
MiniBooNE	π Decay-In-Flight	$\nu_{\mu} \rightarrow \nu_{e}$	3.4σ	800,600	Tesuits directly	
		$\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$	2.8σ			
		combined	3.8σ			
Ga (calibration)	e capture	$v_e \rightarrow v_x$	2.7σ	<3,10		
Reactors	Beta decay	$\overline{v}_{e} \rightarrow \overline{v}_{x}$	3.0σ	3,10-100		

- Excess or deficit does really exist?
- The new oscillation between active and inactive (sterile) neutrinos?

Neutrino oscillations with $\Delta m^2 \sim 1 eV^2$ region

Next generation sterile experiments are almost ready

THE BOREXINO DETECTOR AND SOX 📅 🔜		NR.		$\overline{\nu} \rightarrow$	$\overline{\mathbf{v}}$		
Pyter weeds Diversion	Experiment	Reactor Power/Fuel	Overburden (mwe)	V e Detection Material	V e Segmentation	Optical Readout	Particle ID Capability
- and -	DANSS (Russia)	3000 MW LEU fuel	~50	Inhomogeneous PS & Gd sheets	2D, ~5mm	WLS fibers.	Topology only
РИТЬ	NEOS (South Korea)	2800 MW LEU fuel	~20	Homogeneous Gd-doped LS	none	Direct double ended PMT	recoil PSD only
Source -	nuLat (USA)	40 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li doped PS	Quasi-3D, 5cm, 3-axis Opt. Latt	Direct PMT	Topology, recoil & capture PSD
Ve Under the Place	Neutrino4 (Russia)	100 MW ²³⁵ U fuel	~10	Homogeneous Gd-doped LS	2D, ~10cm	Direct single ended PMT	Topology only
α, = 0.015 α, = 0.03 α, = 0.03	PROSPECT (USA)	85 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li-doped LS	2D, 15cm	Direct double ended PMT	Topology, recoil & capture PSD
- atape	SoLid (UK Fr Bel US)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm multiplex	WLS fibers	topology, capture PSD
- Stupe offy	Chandler (USA)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm, 2-axis Opt. Latt	Direct PMT/ WLS Scint.	topology, capture PSD
- 95% CL - 91% CL	Stereo (France)	57 MW ²³⁵ U fuel	~15	Homogeneous Gd-doped LS	1D, 25cm	Direct single ended PMT	recoil PSD
10° 2×10° 3×10° (experimental states) sin*120,20 2×10° 3×10° talk in oposal for a Three Detector talk in talk in ine Neutrino Oscillation Program rmilab Booster Neutrino Beam talk	Mezzetto's imental summary) Neutrino2016 Detector	Distance BNB Ta	from Acti rget N	10 ² ve LAr 1ass 10		MicroBook	500, 6.6e+20 POT (500m) IE, 1.32e+21 POT (470m) ND, 6.6e+20 POT (100m) v mode, CC Events
$\frac{600 \text{ m}}{700 \text{ MeV}} \sim \mathcal{O}(1 \text{ km/GeV})$	SBND MicroBooNE	110	m 111 m 87	2 ton (² , ²)		Stat., X-4	Reconstructed Energy 80% v_ Efficiency Sec., Flux, Cosmics, Dirt v_ Only Fit — 90% CL
$\nu_{\mu} \rightarrow \nu_{e}$ (horn focu	ICARUS Ised beam) Booster Neutrino Bean	600 I	m 470		50 LISNO 95% CL + LISNO 96% CL + Global Best Ff (arX), Global Fit 95% CL (a - Global Fit 95% CL (a	x1303.3011) x1303.3011) x1303.3011) x1303.5081 x2011308.55085	-3r CL 5r CL

10-4

10-3

10-2

 $\sin^2 2 \theta$

10-1

Steile: creates SeeSaw/Dark matter?

Since 1998 it is established that neutrinos have mass and this very probably implies new degrees of freedom → «sterile», very small coupling to known particles completely unknown masses (eV to ZeV), nearly impossile to find. but could perhaps explain all: DM, BAU, v-masses

RCS/MLF beam

- Current best beam power so far is 500kW.
- 1MW trial during the very short period was succeeded. (bottom plot) http://j-parc.jp/ja/topics/2015/Pulse150206.html
- The mercury target had trouble in 2015, but a new mercury target which has small # of welding was installed in this summer.

	Number of Particles / pulse	Corresponding Power in 25 Hz
—	8.41x10 ¹³	1010 kW
	7.86x10 ¹³	944 kW
	6.87x10 ¹³	825 kW
	5.80x10 ¹³	696 kW
—	4.73x10 ¹³	568 kW

Mercury target / beam intensity plan

- New mercury target (#8) is exchanged from old one (#2) on Oct-2.
- This is the recovery from the trouble which is occurred in 2015 Fall. (small # of welding / bolt-buts scheme)
- This #8 target is stood up to 700kW in principle.
- Target #10 which stands up to (or more than 1MW due to no weldings) will be placed in near future.

Sterile Neutrino Search at J-PARC MLF (JSNS²)

Searching for neutrino oscillation : $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ with baseline of 24m. no new beamline, no new buildings are needed \rightarrow quick start-up

Production / Detection

- Large amount of parent μ + in Hg target $\rightarrow \overline{v}_{\mu}$ are produced.
- If sterile v exist, $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ oscillation is happened with 24m.

Timing and Energy

Timing and Energy are good friends of JSNS²

- > Timing: Ultra-pure v from μ^+ Decay-at-Rest
 - \succ v from π and K -> removed with timing
 - Beam Fast neutrons -> removed w/ time
 - > Cosmic ray BKG -> reduced by 9μ s time window.
- Energy: signals / BKG separation by energy.
 ν from μ has well-known spectrum.
 - Energy reconstruction is very easy at the IBD. (Ev ~ Evis + 0.8MeV)
 - \succ v from μ is high suppressed.

Achievements so far

- 2013 Sep; A proposal was submitted to the J-PARC PAC
- 2014 Apr-Jul; We measured the BKG rate on 3rd floor. -> manageable beam /cosmic BKGs to perform JSNS² PTEP 2015 6, 063C01 / arXiv:1502.02255
- 2014-Dec; The result was reported to J-PARC PAC. → the stage-1 status was granted from J-PARC /KEK
- The performance check of detector and safety discussions are being performed.
- 2016-June: The grant-in-aid was approved for one detector construction
- 2017-May: Technical Design Report was submitted to J-PARC PAC and arXiv (arXiv:1705.08629 [physics.ins-det])
- We aim to start JSNS² in JFY2018

#events (1MW x 3 years x 1 detector (17tons))

Source	contents	#ev.(17tons x 3years) TDR	Reference : SR2014 (50tons x 5 years)	comments
background	$\overline{\nu_e}$ from μ -	43	237	Dominant BKG
	¹² C(v _e ,e-) ¹² N _{g.s.}	3	16	
	Beam fast neutrons	Consistent with 0 < 2 (<u>90%CL UL</u>)	<13	Based on real data
	Fast neutrons (cosmic)	~0	37	
	Accidental	20	32	Based on real data
signal		87	480	$\Delta m^2 = 2.5$, sin ² 2 $\theta = 0.003$
		62	342	Δm^2 =1.2, sin ² 2 θ =0.003

Accidental BKG is calculated by; R acc = $\Sigma R_{prompt} \times \Sigma R_{delay} \times \Delta_{VTX} \times N_{spill}$

- $-\Sigma R_{prompt}$, ΣR_{delay} are probability of accidental BKG for prompt and delayed.
 - $\Delta_{\rm VTX}$; BKG rejection factor of **50**.
 - N_{spill} (#spills / 5 years) = 1.9x10⁹

Sensitivity / Upgrade

- To have a good international competition capability, we want to start the experiment with one detector (17tons fiducial volume).
- Even with one detector, we have a good 90% C.L constraints for 3 years. Left plot
- Meanwhile, we are making effort to obtain the budget to build the 2nd detector. (and enlarged acrylic tanks). This upgrade can make 5 σ significance test for LSND region.

Schedule for 1st detector construction

	JFY2017					JFY2018												
item	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Stainless tank																		
Acrylic tank																		
PMTs																		
GdLS/LS																		
installati on																		
Dry Run																		
Filling																		
Data		SBN far detector (IACRUS) is now at FNAL.																
laking	Details will be shown in the next talk (by J.S.Park)																	

Approval Process (J-PARC PAC, etc)

- Based on the TDR, J-PARC PAC discussed the feasibility of the JSNS² experiment. (TDR contents will be described by Jungsic)
- J-PARC PAC has two stages of the approvals (stage-1 status: motivation of physics is recognized, and real approval (stage-2))
- Lots of discussions are on-going to grant the stage-2:
 - Safety issues at J-PARC MLF (including a big earthquake).
 - Detector movement during the maintenance period (July-Oct). Note the 3rd floor is the maintenance space of the MLF
 - We have to bring the detector to outside of MLF at that time to avoid the interference.
 - Effects of quality of GdLS/LS degrade, PMT tilting during the movement were checked.
 - Calibration (Michel e + Gd captured gammas + radio-active sources)
 - Possible systematic uncertainties.
- Revised TDR including these discussions will be submitted on the middle of Nov-2017, and contents will be discussed at the next PAC.

LS transportation / operation

- We will use iso-tank for the transportation and the storage.
- Cost estimation to purchase iso-tanks and LS storage was already done.

2.4m

Michel e calibration

- One of most important calibration sources is to use Michel electrons from stopped cosmic ray muons.
 - Energy range / shape are almost same as interested samples finally.
- MC simulation said O(a few 100) Hz of stopped muon events are available because our detector is over the ground.
 - Good statistics to check the stability and position dependence of light yield.
 - Pre-scale is needed.
- Right plot shows the relative event rate of stopped muons vertex points. A rate in R²-Z is flat.

Beauty of JSNS²: Small systematic uncertainties

- The systematic uncertainties of the JSNS²'s are small in principle.
 - Uncertainties from energy spectrum.
 - Energy spectrum of neutrinos from decay-at-rest muon is quite well understood. (gives negligible error)
 - IBD cross section is also very well known. (both for energy dependence and for absolute number. → provides negligible uncertainties).
 - Expected uncertainty on the detector energy scale is ~1% level because we have a good calibration sources including Michel e. (stability, position dependence, quenching effects are source of error)
 - Uncertainties from normalization
 - We fit the number of intrinsic ve bar background (profile fitting)
 - Number of μ^+ at the mercury target can be estimated by number of C12(v_e ,e)Ngs reactions. \rightarrow number of $\nu\mu$ bar (before oscillation) can be known within 10%.
 - Accidental background will be estimated by no beam data period.

Pros compared to LSND

- vs LSND; \rightarrow direct test without any excuses (e.g.: v type, Ev, detector target material) w/ better S/N
 - Narrow pulsed beam at MLF \rightarrow timing
 - LSND has no beam timing cut (Linac \rightarrow large duty factor)
 - Pure muon decay at rest at MLF.
 - No Decay-In-Flight source in MLF
 - No beam fast neutrons BKG at MLF.
 - Tighter timing window (~9µs) for
 - cosmic ray rejection at MLF.
 - As mentioned before Detector has many improvements;
 - Gd-LS improves S/N ratio at MLF \rightarrow time window of coincidence (factor 6) and delayed Energy. $(2.2 \rightarrow 8 \text{MeV})$
 - Faster sampling rate of electronics and improved LS make PID easy at MLF.

vs KARMEN \rightarrow JSNS² has more intense v flux by >10 times + Gd-LS

Complementarity

- to reactor / radiation source experiments
 - Disappearance measurement vs appearance (JSNS²)
- to v_{μ} disappearance
 - Disappearance vs appearance
- to FNAL SBN programs (LAr TPCs + horn focused beam)
 - $-v_{\mu} \rightarrow v_{e}$ oscillation vs $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ oscillation (JSNS²)
 - JSNS² aims a complete test for the LSND anomaly with much better S/N and without any excuses.
 - Intrinsic background rate is smaller and energy reconstruction is much cleaner. ($Ev \sim Evis + 0.8MeV$ in IBD)

Other physics at JSNS²

JSNS² physics: Cross section measurements with monoenergetic muon neutrinos

Event rate expectation

[Detector (source)	Target (mass)	Exposure	Distance from source	236 MeV ν_{μ} CC events
[$JSNS^2$ (JPARC-MLF)	Gd-LS (50 ton)	1.875×10^{23} POT (5 years)	24 m	152000

Neutrino-nucleus interaction in Type-II SN

v-A interactions are important in

- core-cooling by v-emission
- v-heating on shock wave
- v-process of nucleosynthesis
- efficiency of neutrino detectors

Reaction rates are to be known with accuracy better than ~10%!

Experiment	$\sigma(^{12}C(v_e,e^-)^{12}N_{g.s.}) (10^{-42} \text{ cm}^2)$
KARMEN (PLB332, 251 (1994))	9.1±0.5±0.8 (10.4%)
LSND (PRC64, 065501 (2001))	$8.9 \pm 0.3 \pm 0.9$ (10.7%)
JSNS ² (arXiv:1601.01046)	(~3%(stat.) expected in 5yrs)

- Sterile neutrino: One of most exciting topics in neutrino community (for 20 years!)
- JSNS² stands at a good position to confirm or refute the existence:
 Direct test (w/o excuses) for the LSND results.
 - MLF and their short pulsed beam gives the best environment.
 - GdLS reduces the accidental background by order of magnitudes compared to the LSND.
- □ At the end of JFY2018, we aim to start data taking.
- Toward the data taking, the collaboration is making best effort on both approvals and construction.