
Chapter 6

Lattice Design

This chapter discusses the lattice design of KEKB in detail. Specific requirements to

consider are the following:

1. Realize the beam parameters listed in Table 2.2.

2. Ensure a sufficiently large dynamic aperture for a high injection efficiency and a

long beam lifetime, particularly the Touschek lifetime in the LER.

3. Maintain a wide range of tunability for the beam parameters, especially for the

horizontal emittance.

4. Allow a reasonable amount of tolerance for machine errors.

Because of the small β∗y (∼ 1 cm) at the interaction point (IP), a large amount of

chromaticity is produced, and it has to be corrected without sacrificing the dynamic

aperture. Discussions on the dynamic aperture and the sources that cause its reduction

are given in section 6.1. The development of the ring lattice design is presented in

section 6.2. Designs of the straight section beam optics are given in sections 6.3 and

6.4. Sections 6.5 and 6.6 examine the required magnet field qualities and tolerances.

6.1 Dynamic Aperture

For efficient beam injection at KEKB it is considered that the lattice design should

allow a momentum aperture of at least ±0.5% and a transverse aperture of > 1.2 ×
10−5 m. For maintaining a sufficiently long beam lifetime ( ∼ 10 hours or better in the

absence of machine errors), an even larger aperture is strongly favored.

A major cause for the reduction of the transverse dynamic aperture is the nonlin-

earity of sextupole magnets which are introduced to correct the chromaticity in the
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ring. To solve this problem, it is considered best to use a pair of identical sextupole

magnets that are connected with a −I transformer in both the horizontal and vertical

planes. This allows to cancel transverse nonlinearity of the sextupole magnets to the

third order in the Hamiltonian[1]. Then, residual terms come to limit the dynamic

aperture. In the case of KEKB, the vertical dynamic aperture is limited by: (1) the

kinematic term of the drift space around the IP, and (2) the fringe field of the final

quadrupole magnets at the edge, facing the IP[2].

A source of momentum aperture limitation is the modulation of linear betatron

oscillations due to the synchrotron motion. If the beta functions at cavities have

dependencies on the momentum, a change of the momentum by the cavity RF field

produces a mismatch between the beam and the betatron phase space ellipse. This

excites synchrotron-betatron resonances at 2νx,y±mνs = N , and an exponential growth

of transverse betatron amplitudes results. The momentum aperture is significantly

degraded near these resonances. Resonances of smaller orders are more harmful. To

avoid this problem a small synchrotron tune is required, such that those resonance

conditions are not met[2]. The chromaticity in the x-y coupling terms is another

source that limits the momentum aperture, since the compensation of the detector

solenoid at the IP is not perfect, as described below.

As mentioned in the previous chapter, a small momentum compaction factor is

needed to reduce the synchrotron tune, while keeping the bunch length and the mo-

mentum spread constant. When the linear momentum compaction is made small, the

effects of higher-order momentum compaction becomes non-negligible. For example,

the second order term produces an imbalance of the dynamic aperture for the positive

and negative sides of the momentum deviation of a particle. This is due to eccen-

tric motions of particles in the longitudinal phase space induced by the second-order

momentum compaction.

Yet one more source of aperture limitation is the chromo-geometric aberration

caused by a breakdown of the −I transformer for off-momentum particles. This aberra-

tion becomes serious in the sextupole pairs for the local chromaticity correction scheme

in the LER, which is discussed in Section 6.2.5. This problem arises, because the prod-

uct of the sextupole strength and the vertical beta function at the sextupole magnets

becomes much larger than in the arcs.

For a given lattice layout, the excitations of sextupole magnets are determined by

evaluating the off-momentum optics directly, i.e. not by using perturbative methods.

The solution of the sextupole excitations is calculated so as to simultaneously minimize

the deviations of the betatron tune νx,y and Twiss parameters βRFx,y and αRFx,y for a few

points in the RF section. The momentum bandwidth considered is 1.5% for the HER
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and 2 ∼ 3% for the LER. The number of fitting points of the momentum bandwidth

is typically 20. All of the sextupole pairs are treated independently. (The results of

the chromaticity correction are shown in Figures 6.5 and 6.6.) Optimization can be

improved by matching for finite betatron amplitudes or by a nonlinear optimization of

the dynamic aperture itself.

The dynamic aperture is estimated by tracking particles in six-dimensional phase

space (x, px, y, py, z, δ) using SAD. Here, the variable z is defined as z = −vt, where t is

the delay from the nominal particle. SAD is a fully symplectic tracking code, developed

at KEK. It incorporates all known terms, such as linear and nonlinear fringe fields, thick

lens multipole fields, kinematic terms, overlap of the solenoid field and other magnets,

etc. In this study, the initial conditions are given as px0 = py0 = z0 = 0 and y0 = ax0,

where a is a constant. The dynamic aperture is expressed by the initial values of the

action 2Jx,y0 and the momentum deviation δ0 of the particles which survived 1000

turns without damping due to synchrotron radiation. Although this period, which

corresponds to 1000 turns, is only 1/8 of the transverse damping time of the LER,

the results of 1000-turn tracking are almost equal to, or slightly smaller than, those of

8000-turn with radiation damping. Therefore, 1000-turn tracking is considered to be

a sufficiently accurate estimation of the dynamic aperture.

The dynamic aperture is evaluated in two ways:

1. With the initial condition y0 = x0/3. This is to check the acceptance for hori-

zontal beam injection.

2. With the initial condition y0 = x0/
√

50. This is for estimating the Touschek

lifetime at collision with an emittance ratio of 2%. The Touschek lifetime is

evaluated while assuming that the dynamic aperture in the Jx-Jz plane is given

by 0 ≤ (Jx/J
max
x ) + (Jz/J

max
z ) ≤ 1. See Figures 6.8 and 6.10 for illustrations of

this approximation.

6.2 Development of Beam Optics Design

We have so far studied five types of optics design, as listed in Table 6.1. These optics

have different combinations of cell structures and chromaticity correction schemes. All

of the optics have been designed to give the required values of the horizontal emittance

and the momentum spread. We have compared the performance of these optics in light

of the following requirements:

1. To give a small synchrotron tune, and
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2. To have a sufficiently large dynamic aperture for beam injection and for the

Touschek lifetime.

The results are summarized in Table 6.1 and Figure 6.1. In the following subsections

these designs are reviewed one by one. Since the second criterion above is especially

challenging for the LER, we will discuss mainly issues concerning the LER.

Injection Touschek νs

Interleaved π/3 FODO Cell bad bad bad

Noninterleaved π/2 FODO Cell good fair bad

Noninterleaved π Cell excellent fair good

Noninterleaved 2.5π Cell excellent good excellent

Noninterleaved 2.5π Cell excellent excellent excellent

+Local Chromaticity Correction

Table 6.1: Comparison of the performances of the cell structures and chromaticity

correction schemes for the LER.

Figure 6.1: Dynamic aperture of the LER with five types of beam optics.
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6.2.1 Interleaved π/3 FODO Cell

We have tried a conventional chromaticity correction scheme with interleaved sextupole

magnets in π/3 FODO cells, where each quadrupole magnet is associated with a sex-

tupole magnet. Sextupole magnets that are separated by the π phase difference are

paired so as to cancel the lowest order of the transverse nonlinearity. We have tried

chromaticity corrections with 6, 12, and 24 sextupole families. In all cases, the dynamic

aperture remained too small, and did not satisfy the requirement. This interleaved sex-

tupole scheme has been abandoned.

6.2.2 Noninterleaved π/2 FODO Cell

An arc lattice based on π/2 FODO cells with a chromaticity correction scheme with

noninterleaved sextupole magnets has been considered. As the first step, the bend

radius ρ is determined based on the requirement for the momentum spread. In elec-

tron storage rings with a constant bending radius and smooth focusing, the horizontal

emittance εx and the momentum compaction factor αp are given by

εx = 2σ2
δ 〈H〉bend ≈

2RAσ
2
δ

ν3
x

, (6.1)

αp =
2π

C
〈ηx〉bend ≈

2πRA

Cν2
x

. (6.2)

Here, RA is the average radius of the arc, νx the total horizontal tune of the arc, ηx

the horizontal dispersion, and H = βx (η′x + αxηx/βx)
2 + η2

x/βx. The symbol 〈f〉bend
represents the average of a quantity f in bend magnets.

According to Equations 6.1 and 6.2, once ρ is fixed, εx and αp are uniquely de-

termined by the total tune νx. Thus, if the arc is built with FODO cells to give

εx = 1.8 × 10−8m, the momentum compaction factor becomes too big. This, in turn,

means that νs ≥ 0.06, and produces serious difficulties in finding adequate operating

points in the tune space. The anomalous emittance due to chromaticity can also be-

come very large when νs is high [3]. In addition, the accelerating voltage becomes

excessively high, if the short bunch length required in the design is to be achieved.

Because of these difficulties, this scheme has been rejected.

6.2.3 Noninterleaved π Cell

To obtain small momentum compaction αp, we must reduce 〈ηx〉bend, while keeping

〈H〉bend constant. This can be done by combining two π/2 FODO cells, where four

bend magnets are merged into two, as shown in Figure 6.2. In this scheme, in addition
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Figure 6.2: Structure of the π cell for the HER (above) and the LER (below).
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to the total tune νx, the position of the bend magnets can also be taken as a free

parameter for achieving the desired αp and εx simultaneously. An acceptable solution

was found for the LER. In the HER, since the bend magnets are longer than those in

the LER, the variable range of αp is narrower. The possible minimum αp in the HER

is somewhat larger than the required value.

From a chromaticity correction view point, the arc lattice built with π cells has a

disadvantage in that the high peaks of ηx appear only in the phase steps of Nπ. This

means that if we place sextupole pairs (SF’s) for horizontal corrections only near the

ηx peaks, corrections at the (N + 1/2)π phases become difficult. Even if we add SF’s

at small ηx points, it is still less effective for (N + 1/2)π phases than in the FODO

case. As a result, the longitudinal dynamic aperture of the LER is unsatisfactory for

the Touschek lifetime.

6.2.4 Noninterleaved 2.5π Cell

The 2.5π cell is created by combining five π/2 FODO cells and by merging ten bending

magnets into four. In this cell structure, the bend magnets are arranged to form

two dispersion bumps, so that we can keep small ηx at the dipole magnets, similar

to the π cell case. By adjusting the positions of the bend magnets and ηx there, we

can achieve the required emittance and momentum compaction factor at the same

time for both rings. This flexibility of the 2.5π cell results in another merit for the

HER: the existing bending magnets become re-usable in the HER arc, satisfying the

requirements of the optics. Successive SF (SD) pairs in the 2.5π cell structure have a

relative phase of 3π/2. Thus, chromatic kicks at the Nπ and (N+1/2)π phases in both

the horizontal and vertical planes can be corrected efficiently. The dynamic aperture of

the 2.5π cell is significantly improved over previous schemes, and it satisfies all of the

beam dynamics requirements. As shown in Figure 6.5, some higher-order chromaticity

still remains, because the sextupole magnets are not sufficiently close to the main

chromaticity sources in the interaction region. For this, further improvements can be

achieved by a “localized chromaticity correction” in the interaction region, which is

discussed in Section 6.2.5.

6.2.5 Noninterleaved 2.5π Cell with Local Chromaticity Cor-

rection

The local chromaticity correction refers to a scheme in which the large chromaticity

produced by the final quadrupole magnets is corrected within the interaction region. Its

advantage is that the creation of higher-order chromaticity can be avoided, by placing
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Figure 6.3: Structure of the 2.5π cell for the HER (above) and the LER (below).
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Figure 6.4: Dynamic aperture of the HER with the 2.5π cell.

Figure 6.5: Chromaticity correction with the 2.5π cell for the LER.

Figure 6.6: Chromaticity correction with the 2.5π cell and the local chromaticity cor-

rection for the LER.
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sextupole magnets optically close to the final quadrupole magnets.

Pairs of vertical correction sextupole magnets are connected by the “pseudo −I”

transformer, which is discussed in Section 6.2.6. Such sextupole pairs are placed in

phase with the final quadrupole magnets near the IP. For those sextupole magnets,

dispersive regions with large βy/βx ratios are created by adding bend magnets in the

straight section. It is practically difficult to install two sextupole pairs for correcting

both the horizontal and vertical planes in the IP straight section. Fortunately, the

sources of the horizontal chromaticity are not so strongly localized as the vertical

(i.e. a sizable amount of horizontal chromaticity comes from the arc and elsewhere,

besides the final focusing section). Thus, we will place only one sextupole pair for the

vertical correction in the straight section in each side of the IP. The last sextupole pairs

(the pairs closest to the IP) at the end of the arc are used for the horizontal correction.

The design of the local chromaticity correction optics was done by minimizing the

momentum dependence of optical parameters in a bandwidth of 2 ∼ 3%. The optimum

drift space length, and excitations of the quadrupole and sextupole magnets have been

found. The local correction has significantly improved the chromaticity correction, as

shown in Figure 6.6. Also, it has drastically improved the dynamic aperture in the

region of large momentum deviations, resulting in a factor 1.5∼2 improvement of the

Touschek lifetime over the optics without a local correction.

A local chromaticity correction scheme is considered for the LER to maximize the

available dynamic aperture. Since the dynamic aperture requirement on the HER is

less demanding, a local chromaticity correction will not be to implemented in HER.

6.2.6 Tunability of Beam Emittance and Momentum Com-

paction Factor with the Noninterleaved 2.5π Cell

It has been found that the 2.5π cell structure has a nice tunability feature, which

allows us to adjust the beam emittance and momentum compaction. It is illustrated

as follows. A noninterleaved sextupole pair in a 2.5π cell is connected with the transfer

matrix, 
−1 0 0 0

m21 −1 0 0

0 0 −1 0

0 0 m43 −1

 . (6.3)

Even if m21 and m43 are non-zero, nonlinear kicks by sextupole magnets are basically

canceled within a pair. We have confirmed that this pseudo −I transformer brings

about a large dynamic aperture, comparable to a perfect −I. Then, by allowing m21 6=
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Figure 6.7: Optics of the local chromaticity correction for the LER. A pair of sextupole

magnets for the vertical chromaticity correction is placed at each side of the IP.
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0 and m43 6= 0, two new free parameters become available for tuning. The “knobs”

corresponding to these parameters may be the excitations of two families of quadrupole

magnets (QF2 and QD2) outside the sextupole pairs. This allows us to tune αp without

breaking down the pseudo −I transformation.

In the present design, the momentum compaction can be changed over the range

of −1× 10−4 ≤ αp ≤ 4× 10−4 by changing the strength of QF2’s and QD2’s by a few

percent. During this time, εx is kept nearly constant. In practice, it is rather difficult to

change εx over a wide range by only adjusting the two families of quadrupole magnets.

A cure to this restriction is to introduce a new family of quadrupole magnets QE2

inside the SF pair. By adjusting ηx at bend magnets, using five free parameters (QF2,

QF3, QD2, QD3, and QE2), we can obtain the required tunability, 1.0 × 10−8m ≤
εx ≤ 3.6×10−8m, while keeping αp constant and maintaining the pseudo −I condition

between the SF’s. In summary, a solution exists to tune εx and αp independently by

adding QE2’s.

6.3 Optics Design of the Interaction Region

6.3.1 Compensation of the Detector Solenoid Field

One of the important issues in designing the optics around the IP is compensation

of the x-y coupling effects generated by the detector solenoid field. Due to the finite

crossing angle at the IP, the design beam orbits are not parallel to the detector solenoid

axis. Thus, dispersion is also generated by the solenoid. Corrections have to be made

for four coupling elements of the transfer matrix between the IP and the arc, as well

as the dispersion near the IP.

A possible solution to this is to add four or more skew quadrupole magnets and

several bend magnets at each side of the IP. This correction, however, is perfect only

for on-momentum particles. The chromaticity of the x-y coupling remains uncorrected,

and can significantly increase the “anomalous emittance” at

νx ± νy ±mνs = N

2νx,y ±mνs = N . (6.4)

The use of skew quadrupole corrections reduces the dynamic aperture, as shown in

Figure 6.10.

The best way to compensate for the x-y coupling effects of the detector solenoid is

to use counter solenoids, so that the integrated field,
∫
Bzds, becomes zero within the

drift space around the IP. This compensation works perfectly for particles with any

momentum. This is the solution that has been adopted in the design of KEKB.
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Figure 6.9: Examples of emittance control in the LER: εx = 1.0× 10−8m (above) and

3.6× 10−8m (below).
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6.3.2 Crab Cavities

An optional use of a crab crossing scheme is currently being studied. To minimize the

required number of crab cavities, the transverse kicks given by the cavities should have

a maximum effect on the bunch orientation at the IP. This means that the horizontal

phase distance of the crab cavities from the IP should be (N + 1/2)π. From the lattice

design view point, it is possible to reserve such a dispersion-free drift space in the

straight section near the arc.

The dynamic aperture has also been checked with the crab cavities. It has been

shown that the dynamic aperture is quite insensitive to the crab cavities, even with a

large amount of errors in the amplitudes and phases of the crab-mode RF kicks.

6.4 Optics Design of Other Straight Sections

This area of the design is still in progress. The following issues will be discussed in a

future version of the design report.

• Dispersion suppressors:

• Symmetry points of arcs:

• Optics with wigglers: As discussed in Chapter 2, the parameter sets for the HER

and the LER are almost identical. However, if the radiation loss is assumed to

come only from bend magnets in the arcs, the radiation damping time of the LER

is longer than that of the HER by a factor of 2. To halve the LER damping time,

without increasing the momentum spread, preparation is under way to install

optional damping wigglers for a total length of 96 m in Oho and Nikko. These

wigglers can be also used to control the LER beam emittance. We can obtain

the required tunability of the horizontal emittance by the wigglers.

• Adjustment of the path length: Changes of the path length due to the wigglers

can be adjusted by special sections called ”chicanes”. Each section is built with

four bending magnets, which are placed in a way similar to that of a unit of wig-

glers. The LER has four 12 m-long chicanes, which provide a sufficient tunability

of the path length. These chicanes can also be used to equalize the circumference

of the LER to that of the HER. Figure 6.11 shows the optics design of the LER

in the vicinity of the chicane structure. The chicane bend magnets are labelled

BC1 and BC2 in Figure 6.11.

• Injection point:
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Figure 6.11: Optics design of the LER in the vicinity of the chicane structure for ring

length adjustments. The chicane bend magnets are labelled as BC1 and BC2.

• Translation chicane:

6.5 Requirements on the Magnet Quality

The tolerances on the systematic multipole errors of the bend magnets and quadrupole

magnets in the arcs have been estimated. The criteria is based on a 2% reduction of

the dynamic aperture integrated in both the momentum and transverse phase spaces.

The results are listed in Table 6.2. In the table Kn is defined as

Kn =
1

Bρ

∂nBy

∂xn
. (6.5)

It is known that requirements similar to those listed in Table 6.2 have been met by

existing magnets that are used for the TRISTAN main ring.
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∆B/B at 50 mm radius

Dipole Magnets

K2/K0 1.0m−2 0.12%

K4/K0 17000m−4 0.45%

Quadrupole Magnets

K5/K1 22000m−4 0.12%

K9/K1 1.3× 1013m−8 0.45%

Table 6.2: Tolerances of systematic multipole errors.

6.6 Effects of Machine Errors and Tuning Proce-

dures

The performance of the noninterleaved scheme lattice may be sensitive to machine

construction errors, which break down the cancellation of sextupole aberrations in the

−I transformation. This section considers the effects of the construction and setup

errors in the ring lattice, and their tolerances for the acceptable operation of KEKB.

The criteria used in this analysis are the emittance ratio, the dynamic aperture, and the

miss-crossing at the IP. The errors considered include: the misalignment of magnets,

BPM offset and field ripple.

Concerning magnet misalignment, we consider the combined effect of temperature-

dependent drift, movement of the tunnel, vibration of the magnets and others. No

attempts are being made to resolve individual errors, or to quote their tolerances

separately. This is because there is no sufficient information available for fixing their

relative contributions at this stage.

In this section the tolerances are not discussed in the form of the maximum allowable

errors, which may be considered to be the common definition. Rather, we assume

certain combinations of initial lattice errors, and simulate how the emittance ratio

and dynamic aperture can be improved by applying a series of beam-based tuning

procedures. This study has been performed by using a sophisticated beam simulation

code SAD, which has been developed at KEK. In this study an analysis was made on

what magnitude of combined errors are still acceptable, such that the target emittance

ratio and the dynamic aperture, etc. can be achieved by realistic beam-based tuning.

This approach clarifies the significance of each tuning process and its role. It also helps

to create guidelines for the development of beam-based techniques of error analyses.

The errors used in the simulation are given in Table 6.3. The assumptions used in
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Element ∆x(mm) ∆y(mm) ∆θ(mrad) ∆k/k

Quadrupole Magnets 0.15 0.15 0.2 1× 10−3

QC Quads2) 0.01 0.01 0.1 1× 10−4

Sextupole Magnets 0.15 0.15 0.2 2× 10−3

Bend Dipole Magnets 0.1 0.1 2× 10−3

Steering Corrector Magnets 0.1 0.2

BPMs3) 0.075 0.075
1)The values are for one standard deviation (σ).
2) Two quads near IP(QCS and QC1).
3) Assume Beam-based measurement of BPM offset.

Table 6.3: Errors used in the simulation1)

the simulation are summarized as follows:

1. Only the LER has been considered. The situation at HER is expected to be

similar, since its arc lattice structure is basically identical to that of the LER.

2. Errors of the quadrupole magnets close to the interaction point (QCS and QC1)

are intentionally assumed to be very small compared to those in the arc section.

This is done in order to magnify the effects of the errors in the arc section. We

will consider the effects of QCS and QC1 separately in the near future.

3. Every sextupole magnet has a mover which can transversely move the magnet

with a maximum stroke of ±3 mm in both the horizontal and vertical directions.

4. The offset errors of the BPMs relative to the magnetic center of the quadrupole

and sextupole magnets are assumed to be measurable with an accuracy of 75 µm.

This is considered to be achievable, for example, by using the K-modulation

method [4, 5].

5. The strength errors of the quadrupole magnets are assumed to be measurable

with an accuracy of 0.1%. The measurement may be directly performed prior to

installation, or by using beam orbit bumps across each magnet.

6. The errors are assumed to obey Gaussian distributions with a cut-off at 3 stan-

dard deviations (3σ). Their magnitudes are given in Table 6.3.
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6.6.1 Emittance ratio and Dynamic aperture

Simulations with 20 different random seeds (events) have been conducted. Figure 6.12

shows the machine performance at various stages of beam tuning. The graphs show

the emittance ratio plotted against βy (m) at the interaction point, and the estimated

dynamic aperture (nx ≡
√

2Jx/εx0 vs. dp/p). The operation point was set to be

(νx,νy)=(46.52, 46.08), which is preferred from the viewpoint of beam-beam effects

(see Chapter 3).

In the tracking calculation, the initial vertical amplitude was set to be one third

that of the horizontal. In the plots for the emittance ratio, the black dots represent

results from individual “events” that correspond to different random seeds for errors.

The straight broken line indicates the design emittance ratio of 2%. In the dynamic

aperture plots, the thick lines indicate the expected dynamic aperture in the error-free

lattice, while the thin lines show the results from simulations with random lattice errors.

The injected beam is expected to occupy the area indicated by the thick rectangle.

Plots (a1) and (a2) are for only orbit corrections, while (b1) and (b2) are for

sextupole adjustments by movers, in addition to orbit corrections.

It can be seen that for the “orbit correction only” case, the emittance ratio is huge,

and the dynamic aperture (DA) is degraded compared to the “error-free” case (thick

line). Although the DA has sufficient space to accept the injected beam, it is desirable

to have much more margins for safety, especially for large momenta, because it limits

the Touschek lifetime.

In order to improve the emittance coupling, sextupole magnets are vertically moved,

simulating movers, such that the orbit passes through their center within 75 µm. The

emittance ratio is dramatically improved, as shown in (b1). The corresponding DA

also shows a small improvement for the transverse direction.

The scatter of β∗y in (a1) and (b1) is fairly large (∼ ±25%). This is a reflection of

strength errors of the quadrupole magnets that are included in the simulation. It has

been found that DA is strongly correlated with β∗y . Thus although those “events” with

smaller β∗y give a larger luminosity, they are also responsible in part for the deteriorated

DA in (b2).

In the next simulation step optics matching was performed, assuming that the

strength errors of the quadrupole magnets are known with an accuracy of 0.1%. This

has the effect of making the expected β∗y of each “event” closer to the design value.

As shown in (c1), the spread of β∗y is much reduced. However, as shown in (c2), DA

becomes much worse for large momenta. This is because the strengths of the sextupole

magnets are no longer optimum for the re-matched optics.

As the final step, by optimizing the sextupole magnets we could recover the DA
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Figure 6.12: Simulated machine performance at various stages of beam tuning. The

graphs show the emittance ratio plotted against βy (m) at the interaction point, and

the estimated dynamic aperture (nx ≡ (2Jx/εx0)−1/2 vs. dp/p). Plots (a1) and (a2)

are for only orbit corrections, while (b1) and (b2) are for sextupole adjustments by

movers, in addition to the orbit corrections. Plots (c1) and (c2) show the case with

optics re-matching. Plots (d1) and (d2) show the results with chromaticity correction

for re-matched optics. For detailed descriptions see the text.
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close to the ideal, as shown in (d1) and (d2). (There was one exception for which we

could not find the optimum setting of the sextupole magnets).

It can be seen that tuning with sextupole mover is very effective to optimize the

emittance coupling, because it is orthogonal to the DA: it does not affect the dynamic

aperture.

6.6.2 Field Ripples

If the excitation strengths of the magnets change at frequencies for which the or-

bit feedback system cannot apply corrections effectively, then noticeable performance

degradation may result. To evaluate this issue, the tolerances on the field jitter of the

magnets have been calculated.

The criteria for calculating the jitter tolerances are that: (1) changes in the field do

not induce either emittance growth or a deterioration of DA by more than 10%, and

(2) shifts of the beam orbit at the IP do not exceed 0.1σ∗x,y.

The calculated tolerances of the field jitter are summarized in Table 6.4. The

tolerances on the sextupole jitters are smaller than those for the quadrupole magnets.

The QCS quadrupole magnets for the final focusing are assumed to be connected in

series to a common power supply. The third column in the table gives the effect of

jitter on the emittance or DA. The symbols ∆x∗ and ∆y∗ are the horizontal and vertical

orbit deviations at the IP. The ratio ∆A/A0 is the relative change in the area of the

dynamic aperture, i.e., the sum of nx for each dp/p point.

It should be noted that the tolerances quoted in the table are for the field, and that

the numbers are not to be considered directly for the magnet power supply. To estimate

the tolerances on the ripples of the magnet power-supplies, the effects of eddy currents

in the vacuum chamber have to be taken into consideration. Generally, the power-

supply ripple tolerances are much more relaxed than the values shown in Table 6.4.

For example, the tolerances of the 50 Hz component of the power supply ripples are

10 times greater than those given in Table 6.4

6.7 Conclusions

Detailed studies on the lattice for the arc sections of KEKB have been performed. The

present working design is based on a 2.5π cell structure. It offers an excellent dynamic

aperture, and tunability of momentum compaction and beam emittance. The use

of a local chromaticity correction scheme near the IP appears to be very promising.

The requirements on the magnet field quality and errors of alignment and magnet

excitations have been studied.
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Element relative jitter (σ) what limits

Bend Dipole Magnets 1× 10−5 ∆x∗ = 3.4µm

(σ∗x = 80µm)

Quadrupole Magnets 1× 10−4 εy/εy0 = 5± 19%

∆A/A0 = −3± 14%

QCS Quads 1× 10−5 εy/εy0 = 10%

∆A/A0 = −10%

Sextupole Magnets

Steering Corrector Magnets 1× 10−5 ∆y∗ = 0.1µm

(σ∗y = 2µm)

Table 6.4: Tolerances of field jitter. Symbols ∆x∗ and ∆y∗ denote the horizontal and

vertical orbit deviations at the IP, while the ∆A/A0 is the relative change of the area

of the dynamic aperture plot, i.e., the sum of nx for each dp/p point.
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