
Chapter 3

Beam-Beam Interactions

3.1 Introduction

As Chapter 2 has shown, a beam separation scheme with a relatively large crossing

angle (2× 11 mrad) has been chosen for KEKB. The expected benefits are as follows:

1. It makes it possible to accommodate a wide range of combinations of the bunch

intensity vs. bunch spacing (minimum 0.6 m).

2. It makes it possible to use superconducting final focusing quadrupole magnets,

and the system can provide collisions at ECM = 10.4 ∼ 11.0 GeV without modi-

fying the hardware layout of the beam line.

3. The absence of separation bend magnets leads to a significant reduction of syn-

chrotron radiation near the interaction point.

4. Compensation solenoid magnets can be implemented near the interaction point.

5. An extremely large beam separation is provided, even at the first parasitic colli-

sion point.

How this scheme is realistically adequate at KEKB depends on whether the behavior of

the beams should be stable and satisfactory under finite angle crossing. The purpose

of this chapter is to document the results of studies that have been carried out for

KEKB in an effort to answer this question.
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Figure 3.1: Lorentz transformation from the laboratory frame to the “head-on” frame,

which is used for applying synchro-beam mapping to calculate beam-beam interactions

with finite crossing angles.

3.2 Simulation of a Beam Collision with Finite

Crossing Angles

A new modelling algorithm has been developed to simulate beam-beam collisions under

finite crossing angles. In the algorithm, as indicated in Figure 3.1, the bunches that are

colliding at the crossing angle are first Lorentz-transformed into a frame in which their

momentum vectors are parallel. In this “head-on” frame a symplectic synchro-beam

mapping is applied, and the beam-beam forces and their effects on the bunches are

calculated. When the mapping is finished, the two bunches are Lorentz-transformed

back to the laboratory frame, where the beam tracking code takes over the rest of the

simulation.

This beam-beam code incorporates all known effects, including: (a) the energy loss

due to the fact that a particle traverses the transverse electric fields at an angle, (b)

energy loss due to longitudinal electric fields, and (c) effects due to the variation of β

along the bunch length during a collision (hourglass effect).

Full descriptions of this code and its preliminary results are given in [1] and the

references therein. To date, this is the only code known to us to be fully symplectic

in the 6-dimensional phase space with the hourglass and crossing angle effects taken

into account. The symplecticity in the 3-dimensional sense, and correct treatment

of Lorentz-covariance and bunch slicing there are considered to be important in our

application. This is because the planned total crossing angle (22 mrad) is comparable

to the geometric angle of bunches at the IP of KEKB, i.e. σx/σz = 19 mrad.
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3.3 Beam-Beam Simulation with Linear Lattice

Functions

A series of beam-beam simulations has been conducted based on a simplified lattice

model, where the beam transfer through the ring is represented by a one-turn ma-

trix and a diffusion matrix [5]. Although the interaction between the beam-beam and

non-linear lattice effects cannot be studied using this method, it allows us to quickly

compare the luminosity performance in various beam parameter and tune conditions.

This simulation is also necessary to compare the luminosity between linear and non-

linear lattices.

In this simulation the beam-beam effect is calculated according to the prescriptions

given in the previous section. A weak-strong formalism is used. Typically the strong

bunch is longitudinally sliced in 5 slices, and the weak bunch is represented by 50 super-

particles. The effects of radiation damping and diffusion are included in the calculation.

Its details are given in [1]. Parameters such as the initial beam emittance, coupling,

bunch intensity, β∗, orbit errors at the IP and the machine tunes are specified as

initial conditions. Then, the beam-beam collision and revolutions through the ring are

simulated for up to 10 radiation damping times. The resultant beam size is examined.

The strong beam is given a specified Gaussian distribution. The weak beam has a

distribution function given as the sum of δ-functions, which represent the ensemble of

particles. The expected luminosity is calculated as a convolution of the distribution

functions of the two beams.

The initial beam parameters in the simulation are specified in such a way that

they would give the design luminosity value of 1 × 1034 cm2s−1 or somewhat higher

values, with collisions of 5120 bunches per ring in the absence of aberrations and beam

blow-up. Figure 3.2 shows an example of the results from this simulation. In this case,

the crossing angle at the IP is set to zero. The synchrotron tune νs is assumed to be

0.017. The figure shows a contour diagram of the expected luminosity as a function of

the transverse tune (νx and νy) in the range 0 < νx, νy < 0.25. The contour spacing is

1033 cm−2s−1. Pronounced luminosity reduction due to the coupling resonance is seen.

Also, traces of νy = 2νx, 4νx + 2νy = 1 and the synchro-betatron resonance νs = 2νy

are seen.

Figure 3.3 shows a similar luminosity contour plot in the νx-νy plane, but for the

case with a crossing angle of 2× 10 mrad. The beam intensity was changed from that

of Figure 3.2 in order to adjust the geometric luminosity, while keeping the other pa-

rameters unchanged. An additional luminosity reduction due to the synchro-betatron

resonance line νs = 2νx is evident. Also, resonance lines such as νx = 2νy, 3νx = 5νy,
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Figure 3.2: Result from a beam-beam simulation with a linear lattice model. In this

case, the crossing angle is set to zero. The expected luminosity in the νx-νy plane is

shown. The contour spacing is 1033 cm−2s−1.
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Figure 3.3: Calculated luminosity contour diagram in the case of a crossing angle of

2×10 mrad. The expected luminosity in the νx-νy plane is shown. The contour spacing

is 1033 cm−2s−1.
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Figure 3.4: Two slices from the luminosity contour plot for the zero crossing angle

case. The expected luminosity as a function of νy is shown for νx = 0.1 and 0.11.
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Figure 3.5: Two slices from the luminosity contour plot for a crossing angle of 2× 10

mrad. The expected luminosity as a function of νy is shown for νx = 0.1 and 0.11.
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3νx = νy, and 4νy − 4νs = 1 are causing a luminosity reduction. Those resonances did

not cause a luminosity reduction in the case of the zero crossing angle. However, a

sizeable amount of areas in the νx-νy plane appear to be intact.

Figure 3.4 shows two slices of the contour plot in Figure 3.2. The expected lumi-

nosity as a function of νy is shown for νx = 0.1 and 0.11. Likewise, Figure 3.5 shows

two slices of Figure 3.3 for a comparison.

Some notable observations are summarized as follows:

1. Introducing a finite crossing angle at the IP certainly causes a reduction of us-

able νx-νy combinations, because of synchro-betatron and other resonances. The

effects are larger for a larger synchrotron tune νs, particularly when νs > 0.03

holds.

2. However, when νs is kept small i.e. below 0.02, a fair amount of regions in the

νx-νy plane is still free from synchro-betatron resonances, and thus they appear to

be usable. Such regions exist as well-connected zones, rather than many isolated

islands. Some of the acceptable νx-νy regions are compatible with the conditions

preferred in dynamic aperture considerations.

3. For the beam intensity of a few ×1010 per bunch or below, no intensity-dependent

beam blow-up is predicted with finite crossing angles, as far as this simulation

using the simplified lattice model is concerned.

4. When the synchrotron tune (νs) is small, and when a resonance-free condition

of νx-νy is chosen, the expected luminosity there is roughly consistent with naive

expectations based on the geometric and linear effects, as discussed in Chapter

2.

5. The luminosity calculated with an ideal linear lattice, in some cases, can become

larger than a naive expectation, which only considers geometric factors. This

is because of effects of the dynamic beta [3] and dynamic emittance [4]. As

an example, Figure 3.6 shows correction factors for the β and ε calculated for

0 < νy < 0.1.

The results from this study have been reviewed in conjunction with investigations on

the tune-dependence of the dynamic aperture and other aspects of the KEKB design.

It has been found that beam dynamics considerations in the lattice design favor a

horizontal tune (νx) slightly above the half integer resonance. From studies on the

engineering design required for magnets in the interaction region, a crossing angle of

2× 11 mrad has been chosen. Figures 3.7 and 3.8 show the calculated luminosity tune
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Figure 3.6: Dynamic beta and dynamic emittance effects: the dotted line indicates β,

dashed line is ε and the solid line is βε. The horizontal axis is the tune (modulo 1/2).

All of these are normalized by their nominal values.
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Figure 3.7: Result from a beam-beam simulation with simplified particle tracking. In

this case, the crossing angle is set to 2×10 mrad. The expected luminosity in the νx-νy

plane is shown. The contour spacing is 1033 cm−2s−1.

3–7



0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5
tuneX -> 0.53

tuneY

Lum/10^34

0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5
tuneX -> 0.52

tuneY

Lum/10^34

Figure 3.8: Two slices from the luminosity contour plot of for the region 0.5 < νx < 0.75

and 0 < νy < 0.25 as shown in Figure 3.7. Expected luminosity as function of νy is

shown for νx = 0.52 and 0.53.

diagram for 0.5 < νx < 0.75 and 0 < νy < 0.25. The final working parameters for

the detailed design work have been determined as Table 3.1. The effective beam-beam

parameter for this set of parameters is ξx,y = (0.04, 0.05), which takes account of the

dynamical reduction factors, as discussed in Chapter 1. Figure 3.9 shows the luminosity

tune diagram, which gives a magnified view of the vicinity of the working parameter

set.

Surveys have also been made on how the luminosity is affected by the bunch length.

Let us call the bunch length of the weak beam σwz and that of the strong beam σsz.

Figure 3.10 shows the expected luminosity as a function of σwz and σsz. The plot on

the right side shows the expected luminosity (solid line) when the condition σwz =

σsz is imposed. The broken line in the plot shows the luminosity expected from a

consideration of only the geometry. It is seen that a shorter bunch gives a higher

luminosity. It is also seen that there is no reasons for choosing different bunch lengths

for the two beams; each bunch should have the bunch length as short as possible. From

a consideration of the necessary RF voltages, it was decided to use 4 mm for the bunch

length.
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βx at the IP 0.33 m

βy at the IP 0.01 m

εx 1.8× 10−8 m

εy 3.6× 10−10 m

σz 0.004 m

(νx, νy, νs) (0.52,0.08,0.017)

Bunch population 1.4× 1010 electrons / bunch

3.2× 1010 positrons / bunch

Total number of bunches 5120 max. per ring

Table 3.1: Working parameter set for the half crossing angle θx of 11 mrad, determined

from considerations on beam-beam effects, dynamic apertures and others.
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Figure 3.9: Luminosity contour diagram near the operating point.
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Figure 3.10: Left: Expected luminosity as a function of the bunch length (in m) of the

strong bunch (σsz) and the weak bunch (σwz ). Right: The same figure for the case with

σwz = σsz.

3.4 Simulations with the Lattice Which Includes

Nonlinearity and Errors

The beam-beam simulation algorithm based on the weak-strong model has been in-

corporated in the computer code SAD at KEK (SAD stands for“Strategic Accelerator

Design” code). This facilitates a tool to study the effects of finite crossing angles at

the IP, combined with the nonlinearity of the lattice and its possible errors.

3.4.1 With Quadrupole Rotation Errors Only

To create finite vertical emittance in the tracking procedure, it is necessary to assume

some x-y coupling sources in the ring. As a simplified case, we first examine a nonlinear

lattice where rotation errors of the quadrupole (Q) magnets are considered to be the

sole source of coupling. We rotate all of the Q magnets randomly, according to

rotation angle = f × r̂3,

where r̂3 is the Gaussian random variable around zero with a unit standard deviation.

The distribution is cut off at 3 standard deviations. For each series of errors, we adjust

f so that the σy equals the assumed vertical beam size at the IP. (Without errors, the

vertical beam size vanishes.) A typical value of f is 5× 10−4 rad.

Calculations of the beam-beam collision and particle tracking, now with SAD, have

been conducted for up to 90,000 turns. Then, the expected luminosity is calculated.

Parallel to these calculations, with the given rotation errors of the Q magnets, the

single-turn beam transfer matrix with radiation damping and the single-turn diffusion
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matrix of the ring are extracted[5]. These matrices are used in a beam-beam simulation

with the linear ring-lattice as discussed in the previous section. The difference between

the luminosity values obtained in these two methods is considered to give some infor-

mation about the effects of nonlinearity in the lattice including sextupole magnets and

skew fields.
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Figure 3.11: Expected luminosity in the weak-strong model calculations of beam-beam

interactions, which are combined with tracking through the ring. The two diagrams

show the cases where the detector solenoid field is compensated in situ at the IP

(right) and without (direct) solenoid field compensations (left); the solenoid field is

compensated by skew quadrupole magnets sitting at other locations.

Furthermore, to investigate the effects of the presence of a solenoid field from the

experimental facility at the IP, those calculations have been repeated for two versions

of the lattice design. In the first case, no explicit solenoid field compensation is made

at the IP, and all of the coupling corrections are made with skew quadrupole magnets

distributed in the interaction region. In the lattice case, the field compensation is

achieved with counter-acting solenoid magnets.

Figure 3.11 shows the results of this study. For each data point in the scatter dia-

gram, the horizontal coordinate gives the expected luminosity from calculations based

on the linear lattice matrix. The vertical coordinate gives the luminosity expected

from full SAD tracking. The diagram on the left shows the result with a lattice design

which assumes no solenoid field compensation at the IP. The diagram on the right is

from a lattice design with full solenoid field compensation.
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The expected luminosity has been found in the range of (0.938±0.185)×1034cm−2s−1,

depending on the random number seed that is used to create rotation errors of quadrupole

magnets. Figure 3.11 indicates that compensation of the detector solenoid field by

counter-acting solenoid magnets is favored over coupling corrections with skew quadrupole

magnets. The field compensation scheme at the interaction point is designed to use

compensation solenoid magnets.

3.4.2 With Realistic Lattice Errors

Simulations with SAD have been repeated with a more advanced model of lattice

errors. Here, finite alignment and excitation errors of the bend (B), quadrupole (Q)

and sextupole (S) magnets are simultaneously considered, together with offset errors

of the beam position monitors (BPMs). The typical magnitudes of the assumed errors,

which we consider realistic, are summarized as follows:

type of element BPM B Q S Steering correctors

horizontal shift (µm) 75 0 100 100 0

vertical shift (µm) 75 100 100 100 0

x-y rotation (mrad) 0 0.1 0.1 0.1 0.1

strength error 0 10−4 10−3 10−3 0


× f,

Gaussian errors (r̂3) are produced according to the rms values given in the table

above. For each series of generated errors, orbit and tune corrections are made in the

tracking code as if it were in an actual operation. Then, the scale of the assumed

errors is re-normalized so that the expected vertical spot size σy agrees with the design

value. We call this normalization factor f . With those renormalized errors in the

machine, the orbit and tune corrections are, once again, performed. The expected

luminosity is evaluated by using the beam-beam code, plus the tracking with SAD.

Different random seeds used for generating lattice errors result in different values of

f (error normalization factor) and different expected luminosity values. Some of the

obtained results are:

luminosity/1034cm−2s−1 =


1.21 f = 1.4

0.9 f = 0.8

1.34 f = 0.5
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This result indicates that the lattice nonlinearity and possible machine errors do

not lead to fatal degradations of the estimated luminosity.

3.5 Quasi Strong-Strong Simulation

The results presented so far are based on a strong-weak model, where typically the HER

beam (electron) is assumed to be strong, and the LER beam (positron) to be weak.

To address the issues which may be overlooked in this treatment, a quasi strong-strong

formalism has been developed. In this scheme, once every 500 turns of revolution

the average electron and positron bunch sizes are “registered.” During the next 500

turns, weak-strong model calculations are performed, while this “registered” electron

(positron) bunch size is used as the “strong bunch size” for calculating the development

of the positron (electron) bunch size. Then the “strong bunch sizes” are updated again,

and the simulation continues.

Figure 3.12 shows the expected luminosity as a function of the revolutions. A

linear lattice is used to represent the lattice beam transfer. No indications of a bunch

core blow-up is seen. Figure 3.13 shows that the horizontal beam size obtained in

the simulation is σx = 6.2 × 10−5 m. It is somewhat smaller than the nominal value

7.56×10−5 m. This is consistent with the dynamic beta and dynamic emittance effects.

50 100 150 200 250 300

1.2

1.4

1.6

1.8

Revolution / 500

Lu
m

in
os

ity
 (

10
34

 c
m

-2
s-

1 )

Figure 3.12: The expected luminosity as a function of the revolution number in the

quasi strong-strong model calculation.

However, it has been found that unequal damping times between the LER and HER

could result in unequal blow-up of the vertical tails of the two beams. This phenomenon

is illustrated in Figure 3.14. There, the time development of the rms bunch size in the

vertical direction for the electron (positron) is shown by solid (broken) lines. The left

side represents the case where equal damping times are assumed for the LER and HER.
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Figure 3.13: Behavior of σx as a function of the revolution number. The solid line

shows the electron bunch size. The broken line shows the positron bunch size.
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Figure 3.14: Behavior of σy as a function of the revolution number. The design value

is σy = 1.66 × 10−6 m. The solid lines show the HER beam size and the broken lines

show the LER beam size. The figure on the left (A) is for the case when both beams

have equal damping times. Figure on the right (B) shows the case where the LER has

a damping time longer by factor 2.
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The right side of Figure 3.14 shows the case with unequal damping times between the

LER and HER (τLER = 2τHER). A factor 1.5 blow-up of the positron rms size is seen.

Note that the spot sizes plotted here are based on the rms of particle distributions. On

the other hand, calculations of the luminosity based on the convolution of the particle

distributions show no significant difference for the two cases: i.e. with and without

equal damping times. This signature is consistent with a growth of the vertical tail.

Thus, it appears desirable to maintain similar damping times for the LER and HER.

This can be accomplished by using damping wigglers in the LER; it will be part of the

lattice design goals.

3.6 Bunch Tails Excited by Beam-Beam Interac-

tions

The presence of non-Gaussian bunch tails causes an extra synchrotron radiation (SR)

background to the detector facility, which is harmful to its data collection and data

analysis. The fractional bunch tail population should be kept less than 10−5 for >

10σx and 10−5 for > 30σy, according to design considerations on SR masks near the

interaction point.

The development of bunch tails due to beam-beam interactions has been studied

with a long-term strong-weak calculation with a linear lattice model. Typically the

simulation is done by tracking 50 super particles over 108 turns of revolution. This

means 1000 seconds for 50 particles, and 14 hours for a single particle in the actual

machine.

Figure 3.15 shows the calculated particle distribution as a function of the action

variable Iy in the vertical coordinate,

Iy =
1

2

[
y2/(σy)

2 + p2
y/(σpy)

2
]
. (3.1)

The particle distribution function ρ(Iy) is normalized to unity. In Figure 3.15 the

vertical axis indicates log10(ρ(Iy)). The core part is identical with the nominal Gaussian

distribution. Non-gaussian tails in the particle distribution are seen. In this case the

function ρ(Iy) can be fitted with a sum of

ρ(Iy) <∼ e−Iy + 5.2× 10−3e−0.15Iy + 3× 10−6e−0.04Iy . (3.2)

We define the normalized vertical amplitude Ay as

Ay =
√

2Iy.
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Figure 3.15: (A) Tail distribution for an ideal linear lattice as a function of the normal-

ized nominal action Iy. (B) The same distribution in the (Ix, Iy) space. The contour

lines are drawn for each factor step of 10.
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Figure 3.16: Probability of a particle having the amplitude larger than Ay.

Then the probability of finding a particle whose amplitude exceeds Ay is calculated as

R[Ay] =
∫ ∞
Ay

ρ(Iy)AydAy.

Figure 3.16 shows log10(R[Ay]) as a function of Ay, based on the calculations shown in

Figure 3.15.

It can be seen that the probability that a particle has a vertical amplitude larger

than 30σy, where σy is the design bunch size, is approximately 10−12. Since the bunch

population is on the order of 1010, no particle is likely to have such a large vertical am-

plitude. Tails in the horizontal direction have been also studied. It has been found that

the development of horizontal bunch tails is much slower than in the vertical direction.

The limit imposed by requirements on the small synchrotron radiation background to

the detector facility is satisfied without problems. Preparations are under way to eval-

uate bunch tails by using tracking calculations which include non-linear effects of the

lattice and possible machine errors.

3.7 Tail, Luminosity and Longitudinal Tilt

The dependence of the tail behaviors on the tunes have been studied. To characterize

the size of bunch tails the largest amplitude (ax, ay) among 50 super-particles during

several damping times is picked up. The part (A) and (B) of Figure 3.17 show lu-

minosity contour plots for the region 0.5 < νx < 1.0 and 0 < νy < 0.5 along with

the maximum particle amplitude in the vertical direction. They show that luminosity

reduction is frequently associated with a growth of vertical tails, but not necessarily

so all the time.

3–17



0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

νx

νx νx

ν y
ν y ν y

(A)

(C)

(B)

Figure 3.17: (A) Luminosity contour diagram in the νx-νy plane. The contour lines are

drawn for luminosity values of 1034 and 0.5 × 1034 cm−2s−1. (B) Contour diagram of

the maximum vertical amplitude of bunch particles. Contour lines are drawn for 30σ0y,

20σ0y and 10σ0y, where σ0y is the nominal vertcal beam size. (C) The longitudinal tilt

angle φxz is shown. The contour lines are drawn for 1, 0.8, 0.6, 0.4,and 0.2 mrad.

3–18



The angle of the beam envelope relative to the longitudinal coordinate has been also

calculated at the same time. The crossing angle in the collision introduces a coupling

between the transverse and longitudinal coordinates. Consequently, the principal axes

of the bunch may tilt not only transversely, but also longitudinally. We calculate the

longitudinal tilt angle in the head-on frame as

φxz =
1

2
arctan

{
2〈xz〉

〈zz〉 − 〈xx〉

}
− θx.

Here, 〈xz〉 represents the long term (three damping times) average of xz. Similar

definitions hold for 〈xz〉 and 〈xx〉. To be more precise, evaluation should be made with

a strong-strong model simulation. However, the weak-strong results can indicate how

serious the effect is.

Part (C) of Figure 3.17 shows a contour diagram of the calculated φxy. The longi-

tudinal tilt angle increases as νx approaches the integral value from below. It exceeds

1 mrad for νx > 0.75.

3.8 Summary of Beam-Beam Simulations with Fi-

nite Crossing Angles

The estimated values of the luminosity in the simulations presented so far are summa-

rized in Table 3.2. The assumed beam parameters are set as in Table 3.1.

Method Luminosity (×1034) Legend

1 1.16 Geometrical

2 1.24 Ideal linear lattice

3 0.938±0.185 Nonlinear lattice

4 0.9 to 1.34 Nonlinear lattice with

realistic errors and corrections

5 1.4 Quasi strong-strong (equal damping)

Table 3.2: Comparison of the expected luminosity values evaluated by various simula-

tions.

Brief descriptions of individual cases in Table 3.2 are given bellow:

1. Expected luminosity with the 2 × 11 mrad crossing angle, where only the geo-

metric effects are considered. Dynamical effects, such as the dynamic beta and

dynamic emittance, are not considered.
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2. Weak-strong beam-beam simulation, combined with a linear, error-free lattice.

3. Weak-strong beam-beam simulation, combined with a nonlinear lattice. Rotation

errors of the Q magnets are used to create the finite luminosity coupling. The

variations are due to the difference in the seed used to generate the rotation

errors. Full compensation of the detector solenoid field is assumed.

4. Weak-strong beam-beam simulation, combined with the nonlinear lattice model.

Excitation and alignment errors of bend, quadrupole and sextupole magnets are

considered. Orbit and coupling corrections are performed in the tracking code,

mimicking the actual operation.

5. Quasi strong-strong simulation with a linear, error-free lattice. Equal damping

times for the HER and LER are assumed.

It is seen that within the simulation studies conducted so far, the luminosity in the

design goal can be achieved with a finite angle crossing of 2×11 mrad at the interaction

point. Unfortunately, this performance cannot be fully experimentally tested until

operating the real-life KEKB machine. As a back-up safety measure, the use of crab

crossing scheme to combine with the finite angle collision is being considered. The

status of its R&D efforts is presented in Chapter 8. Meanwhile, more elaborate studies

of beam-beam effects will be continued:

• In a tail simulation, nonlinear effects in the lattice should be included in the

calculation.

• In a weak-strong simulation with a nonlinear lattice, error correction schemes

from the beam-beam point of view will be examined.

• The strong-strong simulation will be updated so that it can evaluate the beam

envelopes in each turn, using a Gaussian approximation to calculate the beam-

beam forces.

• A more ambitious strong-strong simulation which does not rely on the Gaussian

approximation to calculate the beam-beam force is being developed.

One example of storage rings which implemented a finite crossing angle in the past is

DORIS at DESY. It has been known that difficulties were encountered in its operation.

According to a report [2]:

“Although the width of these satellite resonances (due to synchro-betatron reso-

nances) is very small (< 0.001) as compared to the distance between the resonances,
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they limit the luminosity of the storage ring DORIS. The reasons are the decoupling

transmitter and the rf-quadrupole, which are needed to suppress instabilities. The de-

coupling transmitter gives to different bunches different synchrotron frequencies, with

a spread of ∆Qs = ±0.006. The rf-quadrupole produces a spread in betatron frequen-

cies of ∆Qβ = ±0.005. At the present operating point between 6.24 and 6.15, there

are always some bunches on a resonance.”

“The theoretical and experimental investigations have shown that the satellite reso-

nances are weaker for Qβ-values closer to an integer. We therefore expect that shifting

the operating point into a region near 6.1 will permit higher currents and thus increase

the luminosity.”

Attention has been paid in the KEKB design so that those conditions which could

lead to serious operational difficulties will be avoided. For instance, a fairly low syn-

chrotron tune (0.01 < νs < 0.02) will be used. The coupled-bunch instabilities will

be addressed by careful design of the RF cavities, feedback systems and an optimized

choice of operating parameters, and by not introducing a tune spread.

3.9 Comments on Parasitic Crossing Effects

When the half crossing angle is small (∼ a few mrad or less), the issue of parasitic cross-

ing is quite difficult to study theoretically. This is because both the focussing effects

and shifts of bunch centroid need to be considered in a multi-bunch, multi-crossing

condition in a 3-dimensional way. Studies have been carried out with simulation cal-

culations for a bunch spacing as small as 0.6 m:

1. A strong-strong model simulation based on the Rigid Gaussian Model has been

conducted. Closed orbit effects due to parasitic collisions have been analyzed. It

was observed that the closed orbits of individual bunches will differ from each

other for a smaller (a few mrad or less) crossing angle. In extreme cases, a closed

orbit may not exist at all. Chaotic behaviors of clusters of bunches can result,

having orbit deviations exceeding 10σx.

2. A 2-dimensional weak-strong model simulation to analyze the beam size during

injection and collision conditions has been performed. It was found that for small

crossing angles, the injected beam can rapidly blow up, exceeding the dynamic

aperture limit, and may never become damped to acceptable sizes.

However, it should be pointed out that the validity of the results for small crossing

angles (< a few mrad) with a small bunch spacing (< 1 m) are limited by the approxi-
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mation which is used in the simulation. With the present-day capabilities of computing

facilities, it appears to be very difficult to obtain reliable results in a realistic compu-

tation time. Thus, for a crossing angle < 2 × 2.5 mrad, exact statements cannot be

made, except that the acceptable bunch spacing is likely to be limited to roughly 3 m

or larger.

Fortunately, the choice of a 11 × 2 mrad crossing allows us to evaluate the effects

of parasitic collisions with an approximation that is based on the simplified Gaussian

model with adequate accuracies. This is because the beam separation at the first and

subsequent parasitic crossing points will be large (> 6 mm), and the forces between

opposing bunches in parasitic crossing will be quite weak. No fatal effects have been

observed for a half crossing angle near 10 mrad in weak-strong or strong-strong simu-

lations. We consider that it is safe to conclude that the effects of parasitic collisions at

KEKB with a crossing angle of 2× 11 mrad are negligible.
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