KEKB LER for ILC Damping Ring Study

Lattice simulation of lattice errors and optics corrections.

November 1, 2007

Y. Ohnishi / KEK

Emittance and Lattice Errors

- The purpose of this study is to check a feasibility of the low emittance with optics corrections for the KEKB LER.
- Simulation study: KEKB LER lattice includes machine errors. The machine errors are magnet alignment errors, field gradient errors, and BPM accuracy.
 - BPM error means an alignment error.
- These errors are generated by Gaussian distributions with random seed numbers.

Y. Ohnishi / K

KEKB LER Lattice for ILC Damping Ring Study

• $v_x/v_y = 47.53/42.59$ • $v_s = -0.013$ $\alpha_p = 2.5 \times 10^{-4}$ • $\epsilon_x = 1.5 \text{ nm}$ $\sigma_z = 4.3 \text{ mm}$

Lattice Errors

Multipole components and fringe field have been included in the design lattice.

Following errors are produced with random numbers according to Gaussian. The values are one standard deviation(σ).

	alignment error Δx (μm)	alignment error Δy (μm)	rotation error Δθ (mrad)	gradient error ∆k/k
Bending magnet	100	100	0.1	1x10 ⁻⁴
Quadrupole magnet	100	100	0.2	3x10 ⁻⁴
Sextupole magnet	100	100	0.2	5x10 ⁻⁴

Optics Corrections

- Correction of closed orbit distortion
- XY coupling correction
 - measurement:
 - vertical orbit response induced by a horizontal single kick due to a steering magnet.
 - corrector:
 - symmetric vertical local bumps at sextupole pairs(-I' connection)
- Dispersion correction
 - measurement:
 - orbit response changing rf frequency.
 - corrector:
 - asymmetric local bumps at sextupole pairs(-I' connection)
- Beta correction
 - measurement:
 - orbit response induced by a single kick due to a steering magnet.
 - corrector:
 - fudge factors to quadrupole magnet power supplies(families)

Optics Corrections by using sextupoles (1)

Sextupoles are located at arc sections and LCC(LER only).

Optics Corrections by using sextupoles (2)

Sextupoles are located at arc sections and LCC(LER only).

Optics Corrections and Vertical Emittance

Optics Corrections and Vertical Emittance

- Optics corrections can achieve $\varepsilon_v/\varepsilon_x=0.2$ %, where $\varepsilon_x=1.5$ nm.
- BPM accuracy should be less than 10 μ m.