R&D Plan on Clearing Electrode using the KEKB LER

> Y. Suetsugu and H. Fukuma, KEKB M. Pivi and L. Wang, SLAC

> > 2007. 07. 31 at KEK

Goal

- Establish the technique of clearing electrode for ECI
 - Available for high current machine
 - Power dissipation into the electrode
 - Low beam impedance
- Demonstrate the effect on electron cloud formation
 - Measurement of cloud density
- Note: It should be still important to develop the electrode technique as a backup solution.

– A surface with δ_{max} (Max. SEY) may be OK.....

Location

• OHO wiggler section (Straight section)

Location

• One wiggler at the most upstream side

- About 15 m section between gate valves
- Magnetic field:0.75 T
- Effective length: 346 mm
- Aperture (height): 110 mm
- Very weak SR from ^{2007.07} Jpstream

Electron Density

Calculation by L. Wang

Layout

• Use one wiggler magnet Unit=cm -133,0--129,0--101,8--37.5Beam ᡃᢩ୷ᢧᢩ᠘᠊᠋ ᇍᇭᇪᇍ ᡒᡃ᠋᠋᠋ᡰᡃᠮ᠋ᢧ᠊ᡖ ⋥Ш⋤ ᡰᡃ᠋ᡏ᠊᠊᠋ᢧ᠋ᡀ **Test section** Test chamber

• One electron monitor (Up) and one electrode (Bottom) [or vice versa]

2007.07.31

Beam Test

- First step
 - Install outside of magnet (upstream side)
 - Check the heating of electrode
 - Measure temperature of the test chamber and the cooling water.
 - If possible, with electron monitor
 - Measurement without magnet?

Beam Test

- Second step
 - Install into the wigger magnet
 - Magnet should be halved.
 - With electron monitor
 - Measure the difference of the electron currents with/without applying voltage to the electrode
 - Voltage
 - Positive and negative
 - Change electrode structure
 - Groove surface and include also another bullet with
 - TiN surface

Plan

- Calculation of RF properties has just started.
 - Particle Studio, MAFIA, GdfidL,,,
 - Wake potential, Impedance, Loss factor, Input power
 - Optimize the electrode structure and materials

Surface current on electrode

2007.07.31

• E_v inside of insulator (Al₂O₃, $\varepsilon_r = 9.9$)

• Output signal from feed through (E_7)

No difference for the position of feed-through

2007.07.31

2007.07.31

Wake potential (z), By Fukuma-san

Simplified model

chamber 50 x 50 mm (square)

length of electrode 400 mm

width of electrode 40 mm

infinitely thin conductor on the dielectric

thickness of dielectric 1 mm

relative dielectric constant ε_r 9.9, tan δ =0

bunch length $\sigma_z = 6 \text{ mm}$

no port to feed high voltage

assume 4-fold symmetry,

i. e. two electrodes - up and down

Characteristic impedance of electrode : 3.0 Ω

2007.07.31

By GdfidL

• Wake potential (z), By Fukuma-san

By GdfidL

Napoly integration : yes, hollow beam : yes with ceramic

2007.07.31

 $W_L(max)=0.009 \text{ V/pC for 2 electrodes}$

loss factor k=5.2 10^{-3} V/pC for 2 electrodes

P = 110 W ! for 1389 bunches 1.7A

$$\epsilon_r = 2$$

 $\varepsilon_r = 9.9$

$\varepsilon_r = 4$

By Fukuma-san

2007.07.31

By Fukuma-san

• Wake potential (z), By MAFIA

chamber R47, 38x2 mm height length of electrode 400 mm width of electrode 40 mm Direct method thickness of dielectric 1 mm relative dielectric constant ε_r 9.0, ε_r tan $\delta=0$ bunch length $\sigma_r = 6$ mm

Different from others!

• Wake potential (z), By MAFIA

RF calculation

- Continue the calculation
 - Check each other
 - Refine model
 - Estimate heating power
- In any way, the cooling will be required.