SeaQuest Experiment at Fermilab

Spinfest 2015

Kei Nagai

Tokyo Institute of Technology

23rd July, 2015
1. Introduction
1. Introduction

Structure of the Proton

- The quarks in the proton exchange gluons.
- Anti-quarks are created by gluon splitting.

\[g \rightarrow u + \bar{u}, \quad g \rightarrow d + \bar{d} \]

- The amount of \(\bar{d} \) in the proton has been thought to be the same as that of \(\bar{u} \) since the masses of \(d \) and \(u \) are almost the same.

\[\bar{d} = \bar{u} \]

▶ “Flavor Symmetry”
Gottfried Sum

- Gottfried sum is the first experimental approach to test flavor symmetry.

\[S_G \equiv \int_0^1 \frac{dx}{x} [F_2^p(x) - F_2^n(x)] = \frac{1}{3} + \frac{1}{3}(\bar{u}_p - \bar{d}_p) \]

\(F_2^p(x), F_2^n(x) \): structure functions of proton and neutron, respectively

- Assuming that parton distribution functions in neutron and proton have flavor symmetry:

\[u_p(x) = d_n(x), \quad d_p(x) = u_n(x), \quad \bar{u}_p(x) = \bar{d}_n(x), \quad \bar{d}_p(x) = \bar{u}_n(x) \]

- If \(\bar{d} \) and \(\bar{u} \) in proton are symmetric, Gottfried Sum is 1/3.

- NMC experiment at CERN (1990)

\[S_G = 0.235 \pm 0.026 < 1/3 \]

\[\rightarrow \bar{d} \neq \bar{u} \]

Discovery of “Flavor Asymmetry”
dependence of Flavor Asymmetry

E866 experiment at Fermilab measured Bjorken x dependence of \bar{d}/\bar{u}.

$(0.015 < x < 0.35)$

- The first measurement of x
dependence of flavor asymmetry.

- 70% asymmetry at maximum has been measured at $x \sim 0.2$.
 - Some theories are proposed for explaining this result (discuss one of them later).
 - They can reproduce this shape of asymmetry.

- $\bar{d} < \bar{u}$ at $x \sim 0.3$?
 - No theory can explain it.
 - Statistical errors are very large.
 - More accurate measurement is needed.
Meson Cloud Model

Meson Cloud Model can reproduce the flavor asymmetry best at present.

- A proton wave function contains virtual meson wave functions.
 \[|p\rangle = |p_0\rangle + \alpha |n\pi^+\rangle + \beta |\Delta^{++}\pi^-\rangle + \cdots \]
 - \(p \rightarrow n + \pi^+ \): \(\pi^+ \) includes \(\bar{d} \).
 - \(p \rightarrow \Delta^{++} + \pi^- \): \(\pi^- \) includes \(\bar{u} \).
 - Probability of \(p \rightarrow n + \pi^+ \) is higher than that of \(p \rightarrow \Delta^{++} + \pi^- \).
 - It leads to \(\bar{d} > \bar{u} \).

- SeaQuest experiment will provide the new data points.
 - It will be helpful for understanding the theory of proton structure.
2. SeaQuest Experiment
2. SeaQuest Experiment

- SeaQuest is a Drell–Yan experiment at Fermi National Accelerator Laboratory (Fermilab).
- Collaboration: Japan, USA, Taiwan
- 120 GeV proton beam extracted from Main Injector is used.
- SeaQuest measures \bar{d}/\bar{u} in the region $0.1 < x < 0.45$ by Drell–Yan Process.
 - Only one experiment which measures \bar{d}/\bar{u} at large Bjorken x.

![Image of SeaQuest and Main Injector](image-url)
Drell–Yan Process

- Drell–Yan process can directly access anti-quarks in the proton.
 - \(q\bar{q} \rightarrow \gamma^* \rightarrow \mu^+\mu^- \)

- SeaQuest uses proton-proton and proton-deuteron Drell–Yan process.

\[
\frac{d^2\sigma}{dx_t dx_b} = \frac{4\pi\alpha^2}{9x_t x_b} \frac{1}{s} \sum e^2 [\bar{q}_t(x_t) q_b(x_b) + \bar{q}_b(x_b) q_t(x_t)]
\]

- \(x_t \ll x_b \) in SeaQuest acceptance.
- \(\bar{q}_b(x_b) q_t(x_t) \) can be ignored.
- Cross-section ratio provides \(\bar{d}/\bar{u} \):
 \[
 \frac{1}{2} \left. \frac{\sigma^{pd\rightarrow \mu^+\mu^-}}{\sigma^{pp\rightarrow \mu^+\mu^-}} \right|_{x_b \gg x_t} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right]
 \]
Goal

Clarify the behavior of \bar{d}/\bar{u} at large Bjorken x.

- Red points show the expected statistical errors of all the data of SeaQuest.
 (Magnitudes are set to 1.)
- SeaQuest will obtain $\times 50$ more statistics than E866 experiment.

 - Beam energy: 800 GeV (E866) \rightarrow 120 GeV (SeaQuest)
 - $\sigma_{DY} \propto 1/s \cdots \times 7$ signals
 - $\sigma_{J/\psi} \propto s \cdots \times 1/7$ main backgrounds
First long run of data taking was done (Run 2).
 - Data analyzed and shown in this presentation are taken in Run 2.

Integrated number of protons:
\[\sim 0.8 \times 10^{18} \]
It is \(\sim 20\% \) of final number of protons.

SeaQuest will take \(3.8 \times 10^{18} \) protons by July 2016.
3. Experimental Setup
3. Experimental Setup

Proton Beam

- Beam energy: 120 GeV
 - Center of mass energy $\sqrt{s} = 15$ GeV
- 5 seconds of the beam is provided every 60 seconds.
 - The other 55 seconds of the beam is used for a neutrino experiment at Fermilab.

Beam bunch

- Frequency: 53 MHz (comes every 19 ns)
- One bunch contains 40k protons on average.
- Duty Factor (indicates stability of beam intensity I) $\equiv \langle I \rangle^2 / \langle I^2 \rangle$: 30% in Run 2 \rightarrow 45% in Run 3
Measures momenta of dimuons from Drell–Yan process.

- **Targets:** proton, deuteron, carbon, iron and tungsten
- **Four Tracking “Stations”**
 - Hodoscopes for Trigger.
 - Drift Chambers or Proportional Tubes for Tracking.
- **Two Dipole Magnets**
 - Focuses the muons and dumps the beam (1st magnet).
 - Determines muon momenta (2nd magnet).
“Trigger Road”
- A rough decision on the Drell–Yan muons pass.
- It is determined by Hodoscopes of St. 1, 2, 3 and 4.
 ex. \((H_1, H_2, H_3, H_4) = (13, 13, 15, 15) \) ··· each number is paddle ID

“Trigger Road Set”
- A set of trigger roads enabled in trigger decision.

Dimuon Trigger
- At least one accepted positive muon and one accepted negative muon are required.
- Drell–Yan rate (mass \(\geq 4 \text{ GeV}/c^2 \)): a few Hz
- Random coincidence is dominant: \(\sim 1 \text{ kHz} \)
4. Analysis and Results
4. Analysis and Results

Dimuon Mass

- Data set: approximately 5% of final data set are analyzed
 - July 25th - Sept. 3rd, 2014
- The distribution shapes of Drell–Yan, J/ψ and ψ' events were estimated with simulation.
- Shape of random backgrounds was estimated using real data.
- Experimental data were reasonably well fitted.
 - Detectors and tracking tools work as expected.
- Drell–Yan events are dominant at mass ≥ 4.2 GeV
Cross-section Ratio

Cross-section Ratio Preview

Cross-section ratio of σ^{pd} and σ^{pp}

- dimuon mass ≥ 4.2 GeV
- The result of cross-section ratio is consistent with the E866 result at small x.
- Systematic error is being investigated and reduced.
 - Main cause of this is beam intensity dependence.
Flavor Asymmetry Preview

- \bar{d}/\bar{u} is derived from cross-section ratio using the formula:

 $$\frac{1}{2} \frac{\sigma^{pd}}{\sigma^{pp}} \bigg|_{x_b \gg x_t} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right]$$

- Systematic error of \bar{d}/\bar{u} is still large but is being investigated and reduced.

- The results of \bar{d}/\bar{u} are consistent with the E866 results at small Bjorken x.

- We need more statistics to clarify the behavior at large Bjorken x.
 - 20 times more data will be used finally.
 - Data taking and quality assurance of the data are in progress.
5. Summary

- Bjorken x dependence of flavor asymmetry of anti-quark is important to understand the structure of the proton.
- SeaQuest measures flavor asymmetry of anti-quarks in the proton at large x ($0.1 < x < 0.45$).
- 20% of final number of protons have already been taken.
- 5% of final data set were analyzed.
- Dimuon mass was reconstructed well.
 - Detectors and tracking tools work as expected.
- Cross-section ratio is consistent with that of E866 at small x.
 - Systematic error is large because of beam intensity dependence of cross-section ratio.
 - We are investigating it and reducing the systematic error.
- Flavor asymmetry is consistent with that of E866 at small x.
 - In order to clarify the behavior at large x, we need more data. It is in progress.