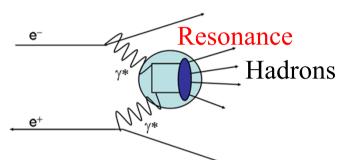
Meson-pair production processes from two-photon collisions at Belle


Sadaharu Uehara (KEK) Belle Collaboration

Workshop on hadron tomography at J-PARC and KEKB Jan. 6, 2017

Resonance production and quantum numbers

Resonance formation from two photon collisions


Q = 0, C = +,
for real-photon collisions
$$J^P = 0^+, 0^-, 2^+, 2^-, 3^+, 4^+, 4^-, 5^+ \dots$$
 (even)[±], (odd $\neq 1$)⁺

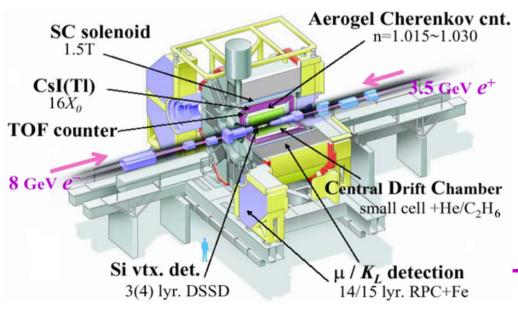
Pseudoscalar-meson pair production: J^P=(even)+ only

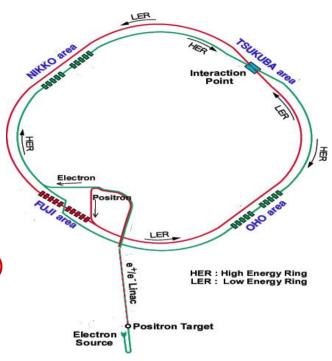
Strict constraints for quantum numbers \rightarrow **Determination of J**^P by PWA $\Gamma\gamma\gamma$: The cross section is proportional to the two-photon partial decay width of the resonance, useful information to explore **meson's internal structure**

Decay properties of the resonance

Searches/Discoveries of **new resonances**Isospin mixing, **Form factors**, **Test of QCD**

KEKB Accelerator and Belle Detector


• Asymmetric e⁻ e⁺ collider 8 GeV e⁻ (HER) x 3.5 GeV e⁺ (LER)


 \sqrt{s} = around 10.58 GeV $\Leftrightarrow \Upsilon(4S)$

Beam crossing angle: 22mrad

• World-highest Luminosity L_{max}=2.1x10³⁴ cm⁻²s⁻¹

 \int Ldt ~ 1040 fb⁻¹ (Completed in Jun.2010)

High momentum/energy resolutions

CDC+Solenoid, CsI

Vertex measurement – Si strips

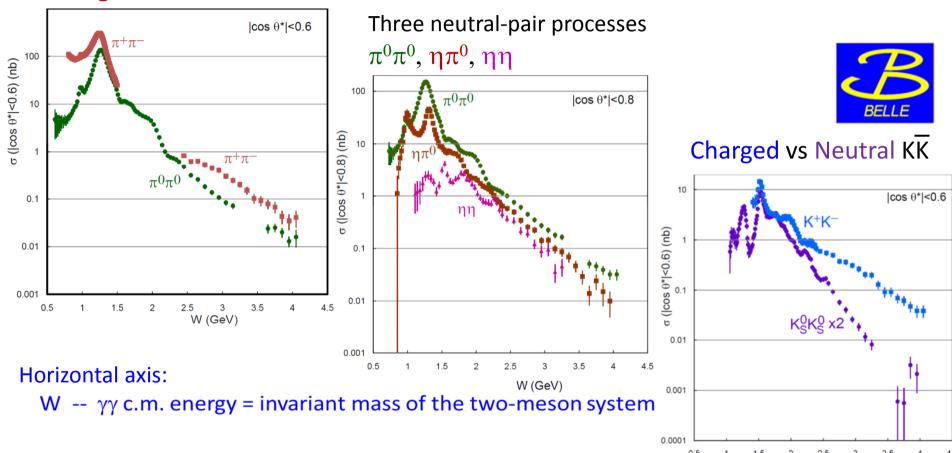
Particle identification

TOF, Aerogel, CDC-dE/dx, RPC for K₁/muon

S.Uehara, KEK, Jan. 2017

" $\gamma\gamma \rightarrow$ Pseudoscalar-meson pair" from Belle

10 papers for 6 processes


Process	Reference	Int.Lum. (fb ⁻¹)	γγ c.m. Energy (GeV)	Light Mesons	QCD	Char- monia
$\pi^+\pi^-$	PLB 615, 39 (2005) PRD 75, 051101(R) (2007) J. Phys. Soc. Jpn. 76, 074102 (2007)	87.7 85.9 85.9	2.4 - 4.1 0.8 - 1.5 0.8 - 1.5	√ √	V	V
K+K-	EPJC 32, 323 (2003) PLB 615, 39 (2005)	67 87.7	1.4 – 2.4 2.4 – 4.1	V	√	1
$\pi^0\pi^0$	PRD 78, 052004 (2008) PRD 79, 052009 (2009)	95 223	0.6 - 4.0 $0.6 - 4.0$	$\sqrt{}$	V	1
$K^0_S K^0_S$	PLB 651, 15 (2007) PTEP 2013, 123C01 (2013)	397.1 972	2.4 - 4.0 $1.05 - 4.0$	\checkmark	$\sqrt{}$	√ √
$\eta\pi^0$	PRD 80, 032001 (2009)	223	0.84 - 4.0	1	1	
ηη	PRD 82, 114031 (2010)	393	1.1 – 3.8	1	1	V

Differential cross section $d\sigma/d|\cos\theta^*|$ for these processes are measured.

The six processes; in total ~20 peaks

Charged vs Neutral $\pi\pi$

W<~2.5GeV: Dominated by resonances

W>~2.5 GeV: (Netgative) Power law works + (χ_c charmonia)

W (GeV)

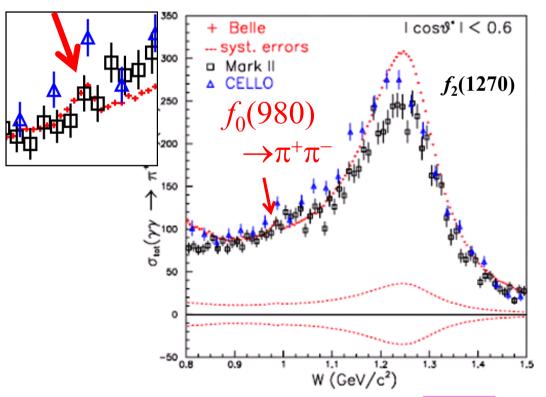
Formalism of PWA for P-meson pair final-state processes

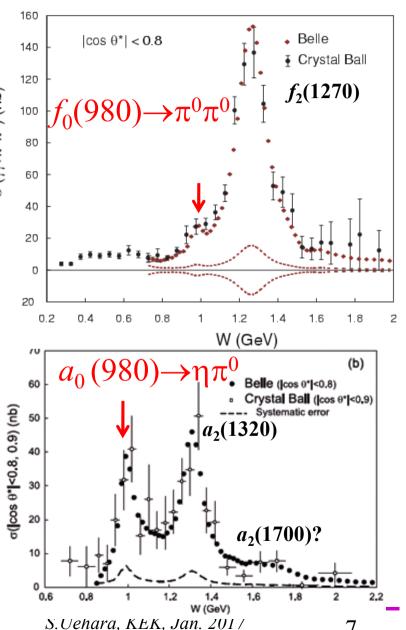
We consider up to J=4 (for W < 3 GeV).

$$\frac{d\sigma}{d\Omega} = \left| SY_0^0 + D_0 Y_2^0 + G_0 Y_4^0 \right|^2 + \left| D_2 Y_2^2 + G_2 Y_4^2 \right|^2$$

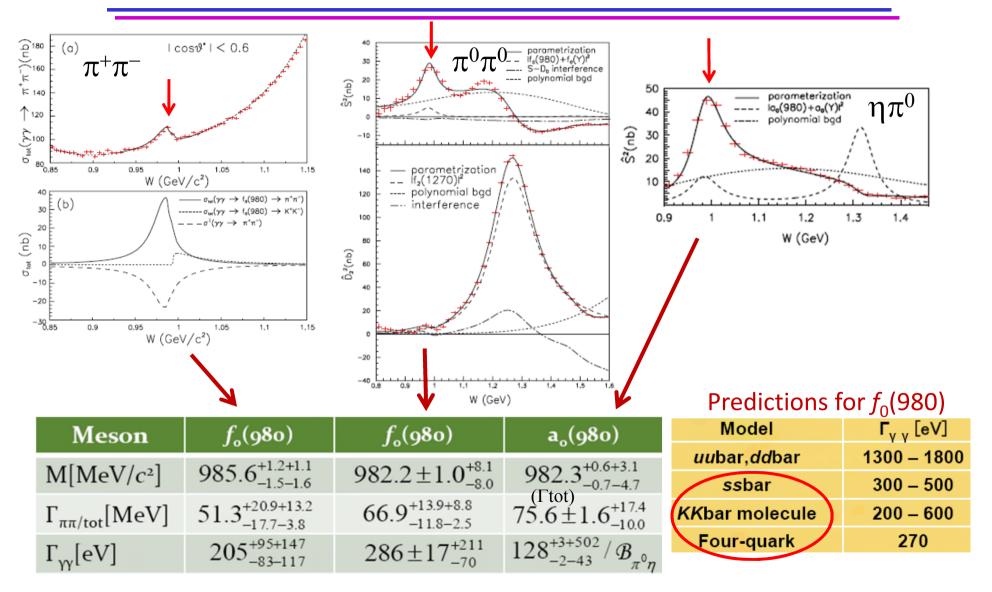
• S, D_0 , G_0 , D_2 , G_2 Partial-wave amplitudes for each wave J_{λ}

J=L=0, 2, 4 (even only) with the helicity $\lambda=0$ or 2 (to the $\gamma\gamma$ axis)


- Y_J^{λ} : spherical harmonics
- $-|Y_j^{\lambda}|$ are NOT mutually independent, as we have no information for the azimuthal-angle direction.
- We cannot determine the partial waves model independently;
 We need parameterization based on a model including the W dependence of resonances and continuum components.
- Ancillary model-independent way: Hat amplitudes; $\left|Y_{J}^{m}\right|^{2}$ mutually independent

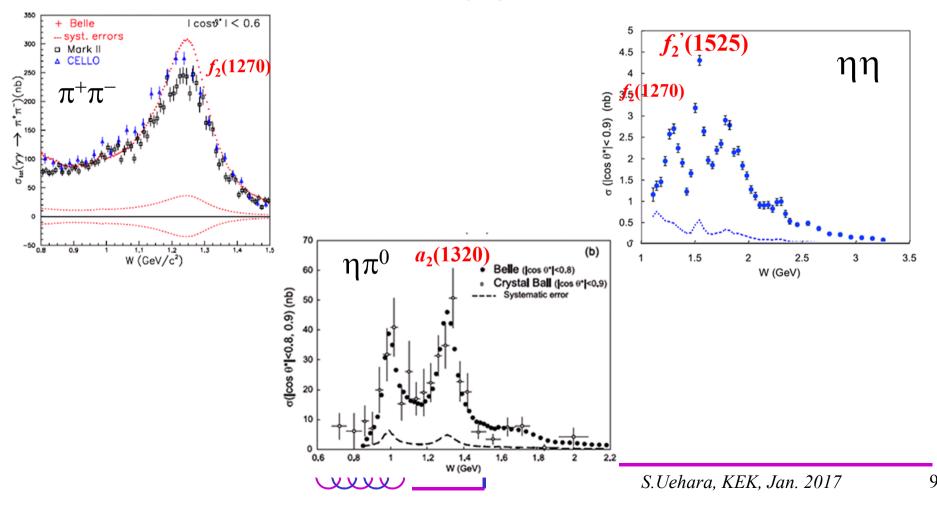

$$\frac{d\sigma}{d\Omega} = \hat{S}^2 \left| Y_0^0 \right|^2 + \hat{D}_0^2 \left| Y_2^0 \right|^2 + \hat{G}_0^2 \left| Y_4^0 \right|^2 + \hat{D}_2^2 \left| Y_2^2 \right|^2 + \hat{G}_2^2 \left| Y_4^2 \right|^2$$

Confirmations of $f_0(980)$ and $a_0(980)$ formations

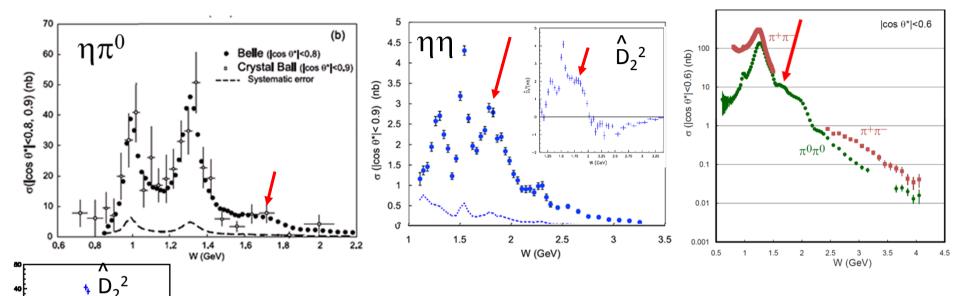

$f_0(980)$ and $a_0(980)$:

Observed as a peak very clearly in two-photon production, for the first time.

Two-photon decay width of f_0 (980) and a_0 (980)

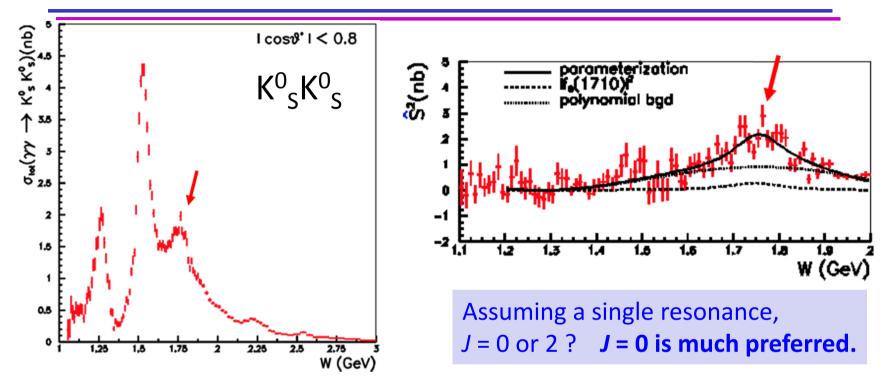


The tensor-meson triplet, $f_2(1270)$, $a_2(1320)$, $f_2'(1525)$

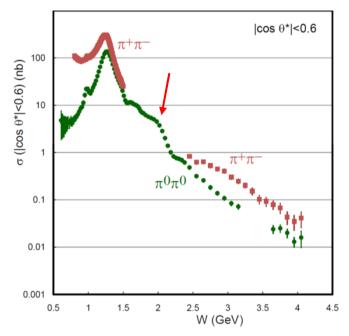

 $f_2(1270)$: The largest peak in $\pi^+\pi^-$ and $\pi^0\pi^0$. Also seen in $\eta\eta$

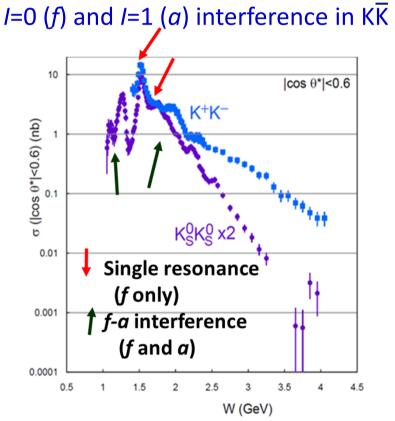
 a_2 (1320): Large peak in $\eta \pi^0$

 $f_2'(1525)$: Large peak in $\eta\eta$, K^+K^- , and $K^0_SK^0_S$


1.6 – 1.8 GeV: Mass region of the greatest difficulty

- Extensive studies are performed in the radiative decays of J/ ψ ($\rightarrow \gamma gg \rightarrow \gamma R$).
- $a_2(1700) \rightarrow \rho^0 \pi^0 \rightarrow \pi^+ \pi^- \pi^0$ is confirmed by previous two-photon measurements.
- $a_2(1700) \rightarrow \eta \pi^0$ seen in our data, but no definite parameters obtained.
- $f_2(1810) \rightarrow \eta \eta$ is confirmed in two-photon process.
- An unidentified structure around ~1.6 GeV is seen in $\pi^0\pi^0$. But, its correspondence to a single resonance of the mass is not sure.

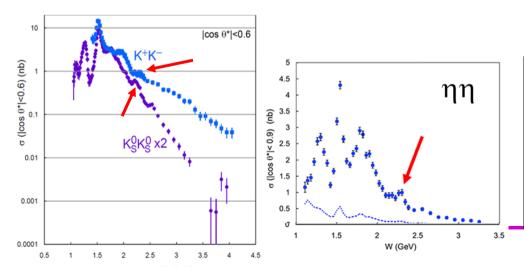

$f_0(1710)$ formation in $K^0_S K^0_S$

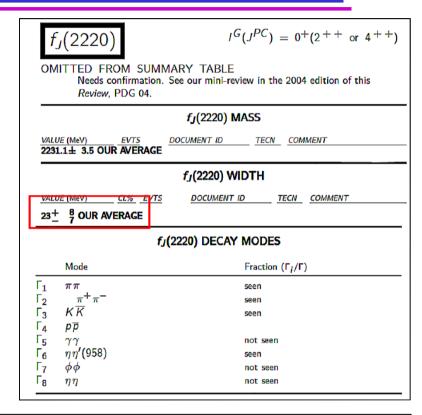

Parameter		$f_0(1)$	710) fit		$f_2(17)$	10) fit
$f_{J}(1710)$	fit-H	fit-L	H,L combined	PDG	fit-H	fit-L
χ^2/ndf	694.2/585	701.6/585	Two solutions of i	nterfe re nce	796.3/585	831.5/585
$\mathrm{Mass}(f_J) \; (\mathrm{MeV}/c^2)$	1750^{+5+29}_{-6-18}	1749^{+5+31}_{-6-42}	1750^{+6+29}_{-7-18}	1720 ± 6	1750^{+6}_{-7}	1729^{+6}_{-7}
$\Gamma_{\rm tot}(f_J)$ (MeV)	138^{+12+96}_{-11-50}	145^{+11+31}_{-10-54}	139^{+11+96}_{-12-50}	135 ± 6	132^{+12}_{-11}	150 ± 10
$\Gamma_{\gamma\gamma}\mathcal{B}(K\bar{K})_{f_J}$ (eV)	12^{+3+227}_{-2-8}	21^{+6+38}_{-4-26}	12^{+3+227}_{-2-8}	unknown	$2.1^{+0.5}_{-0.3}$	1.6 ± 0.2

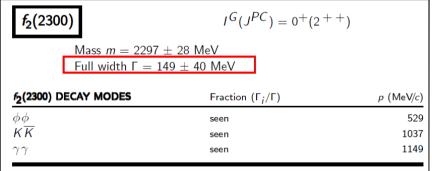
The 1.8 - 2.2 GeV region

- $f_2(1950) \rightarrow \pi^0 \pi^0$ shows a broad structure
- Similar structure exists in K⁺K⁻ (but, they can be different states)
- No peak in $\eta \pi^0$, $\eta \eta$ and $K_S^0 K_S^0$ in this mass region

Parameter	f ₄ (2050)	"f ₂ (1950)"	Unit
Mass $\Gamma_{ ext{tot}}$ $\Gamma_{\gamma\gamma}\mathcal{B}(\pi^0\pi^0)$	$1885^{+14}_{-13} {}^{+218}_{-25} \\ 453 \pm 20 {}^{+31}_{-129} \\ 7.7^{+1.2}_{-1.1} {}^{+23.5}_{-5.2}$	$2038^{+13}_{-11}{}^{+12}_{-73} \\ 441^{+27}_{-25}{}^{+28}_{-192} \\ 54^{+23}_{-14}{}^{+379}_{-68}$	${ m MeV}/c^2 \ { m MeV} \ { m eV}$

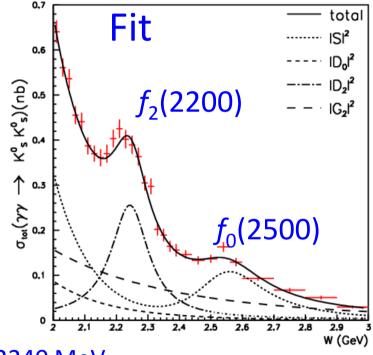

The 2.2 – 2.6 GeV region


• The very narrow $f_J(2220)$ (was $\xi(2220)$) and a wide $f_2(2300)$ are suggested.


Do the both exist? Really narrow?

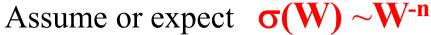
- Our $\pi^0\pi^0$ result does not need $f(\sim 2300)$; the high mass $f_2(1950)$ can explain the observed line shape.
- Surely something narrow(?) peaks are found in K^+K^- , $K^0_SK^0_S$ and $\eta\eta$.

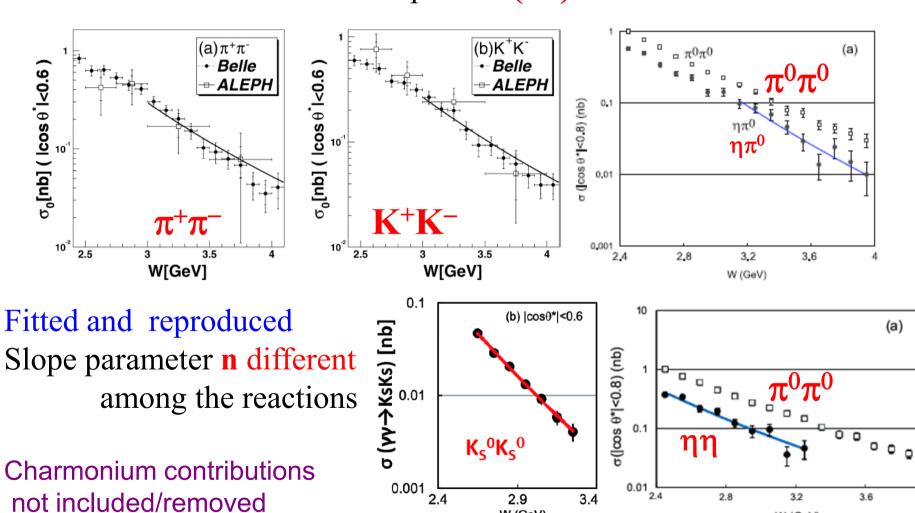
An **ss** state or a glueball flavor insensible?


Fit Results for resonances in K⁰_SK⁰_S

$f_2(2200)$ - $f_0(2500)$ is the best solution (in all the J= 0, 2, 4 combinations)

Parameter	$f_2(2200)$	$f_0(2500)$
$\mathrm{Mass}\;(\mathrm{MeV}/c^2)$	2243^{+7+3}_{-6-29}	$2539 \pm 14^{+38}_{-14}$
$\Gamma_{\rm tot} \ ({\rm MeV})$	$145 \pm 12^{+27}_{-34}$	$274^{+77+126}_{-61-163}$
$\Gamma_{\gamma\gamma}\mathcal{B}(K\bar{K})$ (eV)	$3.2^{+0.5+1.3}_{-0.4-2.2}$	40^{+9+17}_{-7-40}




- -3.4σ for $f_2(2200)$ over $f_0(2200)$
- -4.3σ for $f_0(2500)$ over $f_2(2500)$

- There can be an only wide state around 2240 MeV.
- Narrow appearances in previous measurements may be due to an interference effect and/or statistical fluctuation.
- A high-mass state at 2.5 GeV may be the heaviest light-quark scalar meson so far found.

W-dependences at high energies

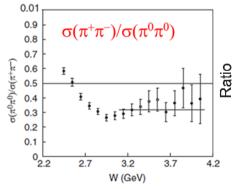
W (GeV)

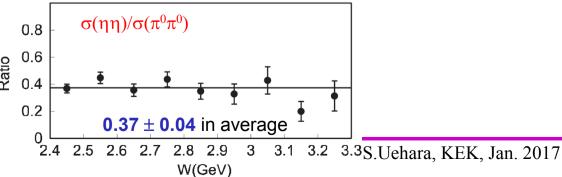
4.0

15

W (GeV)

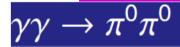
S. Uehara, KEK, Jan. 2017

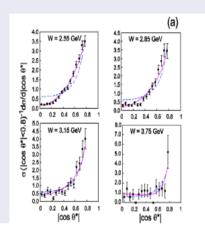

Cross sections and their ratios

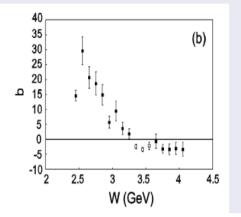

Process	n	W(GeV)	$ \cos \theta^* $	BL	BC	DKV
$K_S^0 K_S^0 $ $\pi^+ \pi^-$	$11.0 \pm 0.4 \pm 0.4$	2.4 - 4.0 [†]	< 0.8		10	
$\pi^+\pi^-$	$7.9 \pm 0.4 \pm 1.5$	3.0 - 4.1	< 0.6	6	6	
K^+K^-	$7.3 \pm 0.3 \pm 1.5$	3.0 - 4.1	< 0.6	6	6	
$\pi^0\pi^0$	$8.0 \pm 0.5 \pm 0.4$	3.1 - 4.1 [†]	< 0.8		10	
$\eta\pi^0$	$10.5 \pm 1.2 \pm 0.5$	3.1 - 4.1	< 0.8		10	
$\eta\eta$	$7.8 \pm 0.6 \pm 0.4$	2.4 - 3.3	< 0.8		10	
Process	σ_0 ratio	W(GeV)	$ \cos \theta^* $	BL	BC	DKV
$K^{+}K^{-}/\pi^{+}\pi^{-}$	$0.89 \pm 0.04 \pm 0.15$	3.0 - 4.1	< 0.6	2.3	1.06	
K_SK_S/K^+K^-	\sim 0.10 to \sim 0.03	2.4 - 4.0	< 0.6		0.005	2/25
$\pi^{0}\pi^{0}/\pi^{+}\pi^{-}$	$0.32 \pm 0.03 \pm 0.06$	3.1 - 4.1	< 0.6		0.04-0.07	0.5
$\eta\pi^0/\pi^0\pi^0$	$0.48 \pm 0.05 \pm 0.04$	3.1 - 4.0	< 0.8	$0.24R_f(0.46R_f)^{\ddagger}$		
$\eta\eta/\pi^0\pi^0$	$0.37 \pm 0.02 \pm 0.03$	2.4 - 3.3	< 0.8	$0.36R_f^2(0.62R_f^2)^{\ddagger}$		

[†] Exclude χ_{cJ} region, 3.3 - 3.6 GeV.

- *n* ranges 7 to 11. Close or not far from QCD prediction of 6 and 10.
- Cross section ratios tend to be constant above 3 GeV.

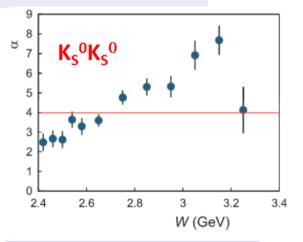

Summarized by H.Nakazawa Hadron2013



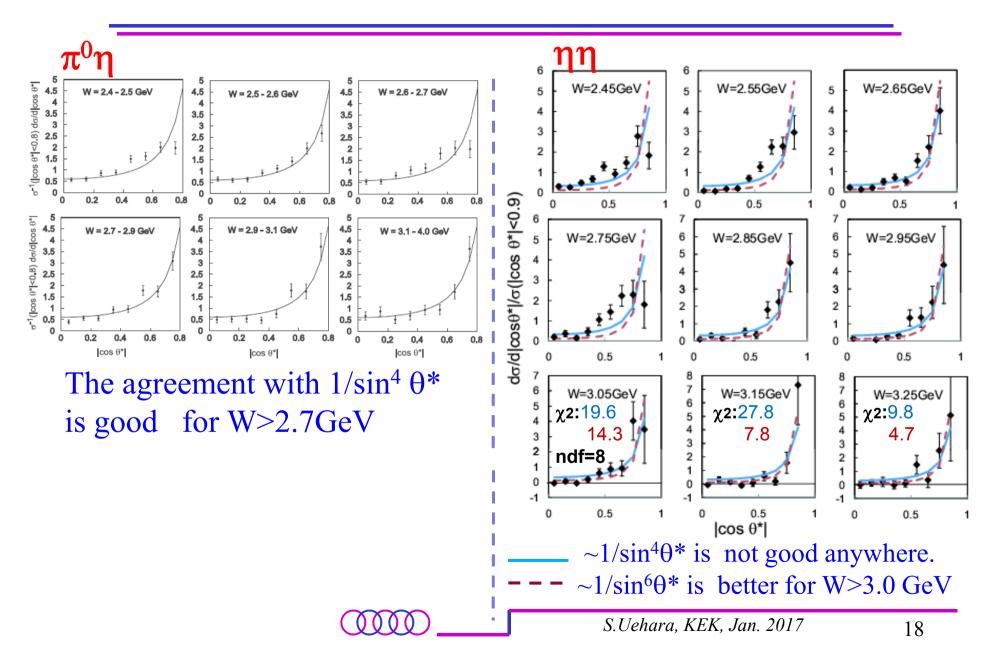


[‡] Assuming η is a member of SU(3) octet (superposition of octet and singlet with mixing angle of $\theta_p = -18^\circ$). R_f is a ratio of decay constants, $f_\eta^2/f_{=0}^2$.

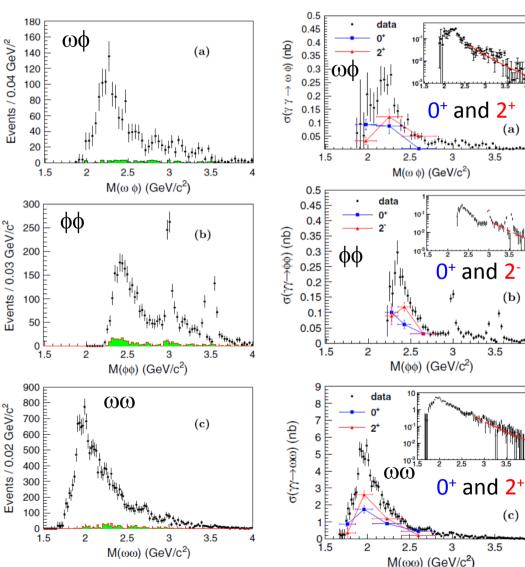
Angular dependence



 $d\sigma/d|\cos\theta^*| \propto \sin^{-4}\theta^*$ is predicted by $q\overline{q}$ -meson model and perturbative QCD


- Fit to $\sin^{-4}\theta^* + b \cos\theta^*$
- b becomes constant above 3.2 GeV.

mode	α in $\sin^{-\alpha}\theta^*$	GeV	$ \cos \theta^* $
K_SK_S	3 – 8	2.6 - 3.3	< 0.8
$\pi^+\pi^ K^+K^-$	Good agreement with 4 Good agreement with 4	3.0 - 4.1 3.0 - 4.1	< 0.6 < 0.6
$\pi^0\pi^0$	Better agreement with $\sin^{-4} \theta^* + b \cos \theta^*$ Approaches $\sin^{-4} \theta^*$ above 3.1 GeV	2.4 - 4.1 [†]	< 0.8
$\eta\pi^0$	Good agreement with 4 above 2.7 GeV	3.1 - 4.1	< 0.8
ηη	Poor agreement with 4 Close to 6 above 3 GeV	2.4 - 3.3	< 0.9


Summarized by H.Nakazawa Hadron2013

$π^0$ η and ηη

" $\gamma\gamma \rightarrow$ Vector-meson pair" from Belle

Observation of New Resonant Structures in $\gamma\gamma \rightarrow \omega\phi$, $\phi\phi$, and $\omega\omega$

Belle, PRL 108, 232001 (2012)

There is a resonance-like structures at 2.0 – 2.5 GeV in each of the final states.

Preferred J^P combinations are determined by the angular analysis of production and decay of ω and ϕ .

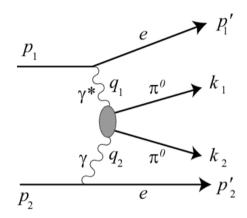
Cross-section size for $\omega \phi$ cannot be well explained.

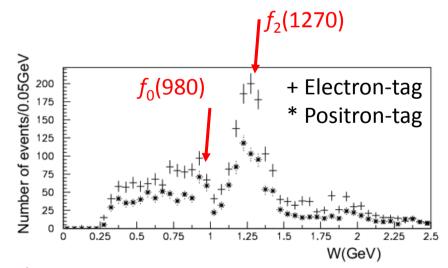
Slope parameters for high W:

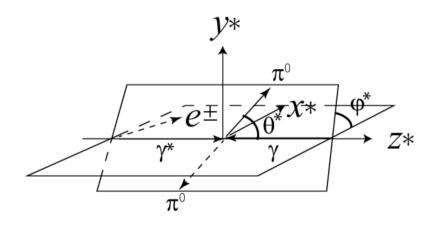
n=7.2
$$\pm$$
 0.6 ($\omega \phi$)

$$8.4 \pm 1.1 (\phi \phi)$$

$$9.1 \pm 0.6 \ (\omega \omega)$$


$\gamma * \gamma \rightarrow \pi^0 \pi^0 : f_0$ (980) and f_2 (1270) TFF's


TFF: Transition Form Factor


Physics motivations:

- Q² dependence of TFF for scalar and tensor mesons (This is the first measurement)
- Test of QCD of qq meson model
- Light-by-Light hadronic contribution for $g-2|_{\mathfrak{u}}$

PRD 93, 032003 (2016)

The f_0/f_2 ratio is larger than in the no-tag case.

Formalism of PWA

$$|F(Q^2)| = \sqrt{\frac{\sigma_R^{\lambda}(Q^2)}{\sigma_R^{\lambda}(0)(1+\frac{Q^2}{M^2})}}$$
 TFF is defined for each resonal produced with each helicity λ

$$\frac{d\sigma(\gamma^*\gamma \to \pi^0\pi^0)}{d\Omega} = \sum_{n=0}^{2} t_n \cos(n\varphi^*),$$

$$t_{0} = |M_{++}|^{2} + |M_{+-}|^{2} + 2\epsilon_{0}|M_{0+}|^{2},$$

$$t_{1} = 2\epsilon_{1}\Re\left((M_{+-}^{*} - M_{++}^{*})M_{0+}\right),$$

$$t_{2} = -2\epsilon_{0}\Re(M_{+-}^{*}M_{++}),$$

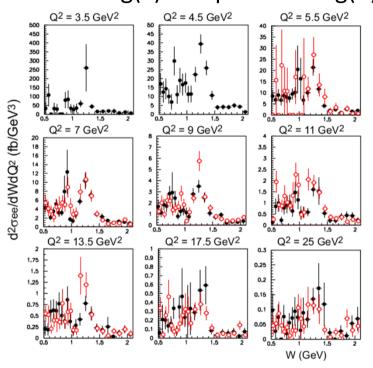
++ etc. --- Helicity state of the incident photons S, D_0 etc. -- Partial-wave amplitude in $\pi^0\pi^0$ scattering B, A_f -- Background and f-resonance components.

 ε_0 , ε_1 --- A spin-dependent flux factor ratio for the virtual-photons

TFF is defined for each resonance R

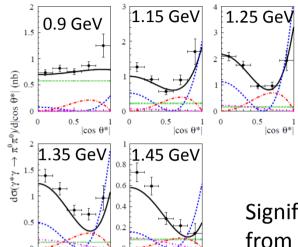
To obtain the resonance amplitudes:

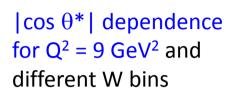
Perform PWA, parameterizing W dependence of the resonance and continuum components of each helicity amplitude, e.g.,


$$M_{++} = S + D_0,$$

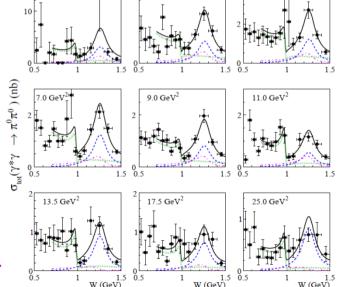
 $S = B_S(W) + A_{f0}(W)$
 $D_0 = 4\pi \left[B_{D0}(W) + A_{f2}(W)\sqrt{r_{20}}\right] Y_2^0$
etc.

Determine each component as well as the relative phase by a fit


Cross-section results and fit

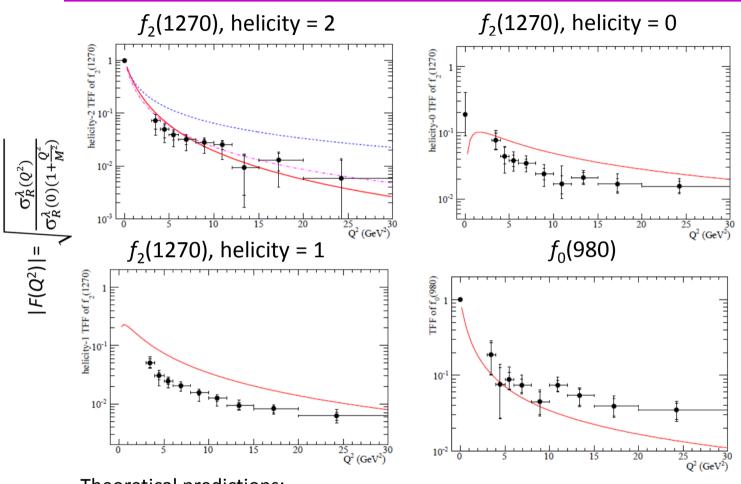

3.5 GeV²

Consistency check between electron-tag(•) and positron-tag(o)


The curves are PWA fit constructed by parameterized resonant (f_0 (980) and f_2 (1270)) and continuum amplitudes.

lines: solid= total, dotted= $|S|^2$, dashed= $|D_0|^2$, and dash-dotted= $|D_2|^2$

Significant contributions from hel.=0 and 1 in contrast to the no-tag (Q²=0) case


 $4.5 \, \text{GeV}^2$

5.5 GeV

Final result of $\gamma^* \gamma$ cross sections and PWA fits

Q² dependence of resonant amplitudes

Theoretical predictions:

Schuler, Berends, van Gulik, a heavy quark approx. NPB 523, 423 (1998)

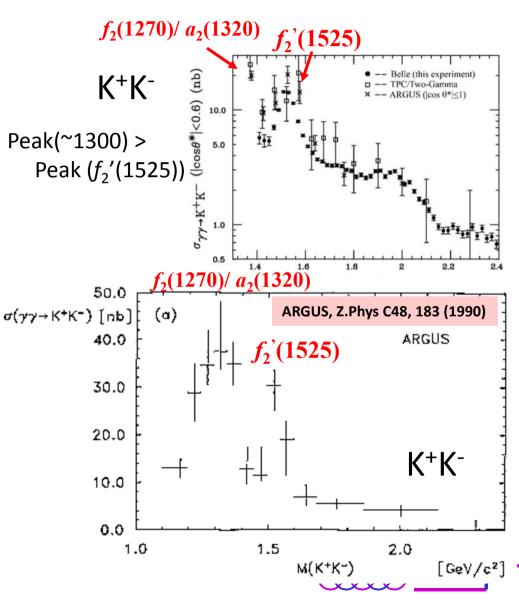
Pascalutes, Pauk, Vanderhaeghen, saturated sum rule, PRD 85, 116001 (2012), η 's

ibid., axial-vector mesons

Summary

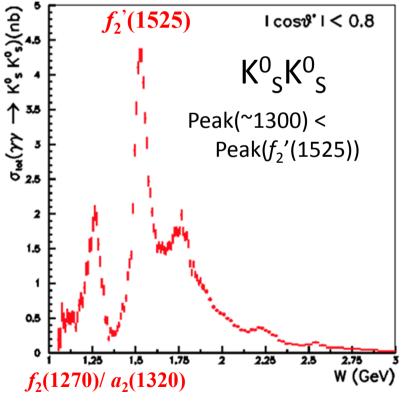
- $\gamma\gamma$ pseudoscalar-meson pair have been measured in six different final states. Measure $\Gamma\gamma\gamma$ (×BF) for various J^{PC} =(even)++ mesons
- Resonant signals in the 1.6 − 2.6GeV region are also found in the VV.

We confirm that light-quark resonance effects are important up to W~2.6 GeV in two-photon processes of exclusive final-state processes.


- In W between ~2.5 and 4 GeV, QCD tests are performed in W and angular dependences and cross-section ratios.
- TFFs for $f_0(980)$ and $f_2(1270)$, in their Q² dependence, have been measured for the first time.

Backup

$f_2(1270)$ - $a_2(1320)$ interference in KK

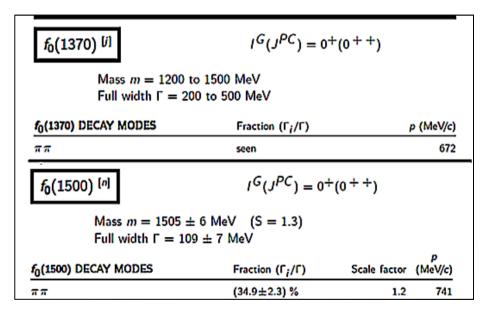

Constructive interference

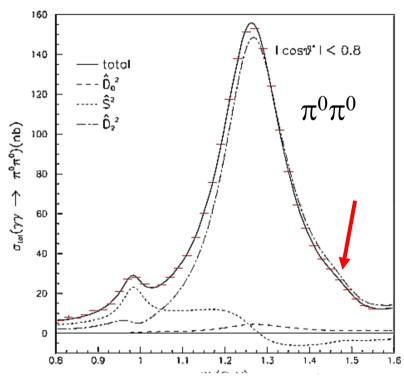
 $f_2(1270)+a_2(1320)$ in K⁺K⁻

Destructive interference

 $f_2(1270)-a_2(1320)$ in $K_S^0K_S^0$

Explained by a phase relation in isospin composition

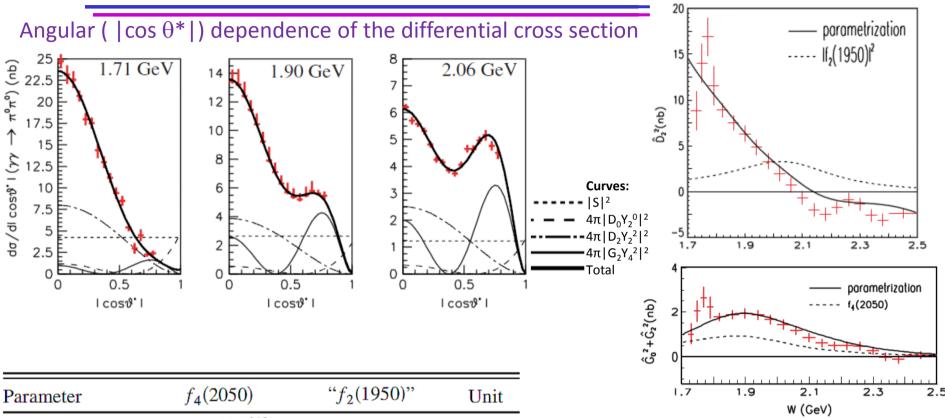

Scalars in the 1.2 – 1.6 GeV region


• Hadron experiments report a wide $f_0(1370)$ and a narrow $f_0(1500)$.

• Some of previous two-photon measurements provide a hint of $f_0(1100-1400) \rightarrow \pi\pi$ under the huge peak of $f_2(1270)$

• Belle's $\pi^0\pi^0$ measurement reports $f_0(1470)$. May be visible in the line shape.

 \rightarrow favorable to the narrow $f_0(1500)$, but also consistent with $f_0(1370)$.



Parameter	Belle $(\pi^0\pi^0)$	Crystal Ball	Unit
Mass	$1470^{+6}_{-7}^{+72}_{-255}$	1250	MeV/c^2
$\Gamma_{ m tot}$	90^{+2+50}_{-1-22}	268 ± 70	MeV
$\Gamma_{\gamma\gamma}\mathcal{B}(\pi^0\pi^0)$	11^{+4+603}_{-2-7}	430 ± 80	eV

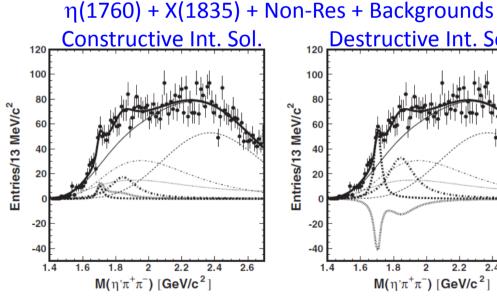
J=2 and J=4 components in $\pi^0\pi^0$

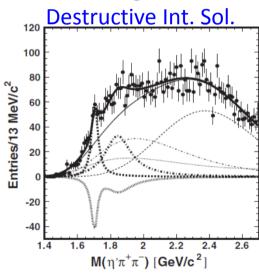
Parameter	$f_4(2050)$	" $f_2(1950)$ "	Unit
Mass $\Gamma_{ ext{tot}}$ $\Gamma_{\gamma\gamma}\mathcal{B}(\pi^0\pi^0)$	$1885^{+14}_{-13} {}^{+218}_{-25}$ $453 \pm 20 {}^{+31}_{-129}$ $7.7^{+1.2}_{-1.1} {}^{+23.5}_{-5.2}$	$2038_{-11}^{+13}_{-73}^{+12} \\ 441_{-25}^{+27}_{-192}^{+28} \\ 54_{-14}^{+23}_{-68}^{+379}$	${ m MeV}/c^2 \ { m MeV} \ { m eV}$

 $\chi^2(ndf)$ 323.2 (311)

The mass-magnitude relation to the spin between f_2 and f_4 is opposite between our measurement and PDG.

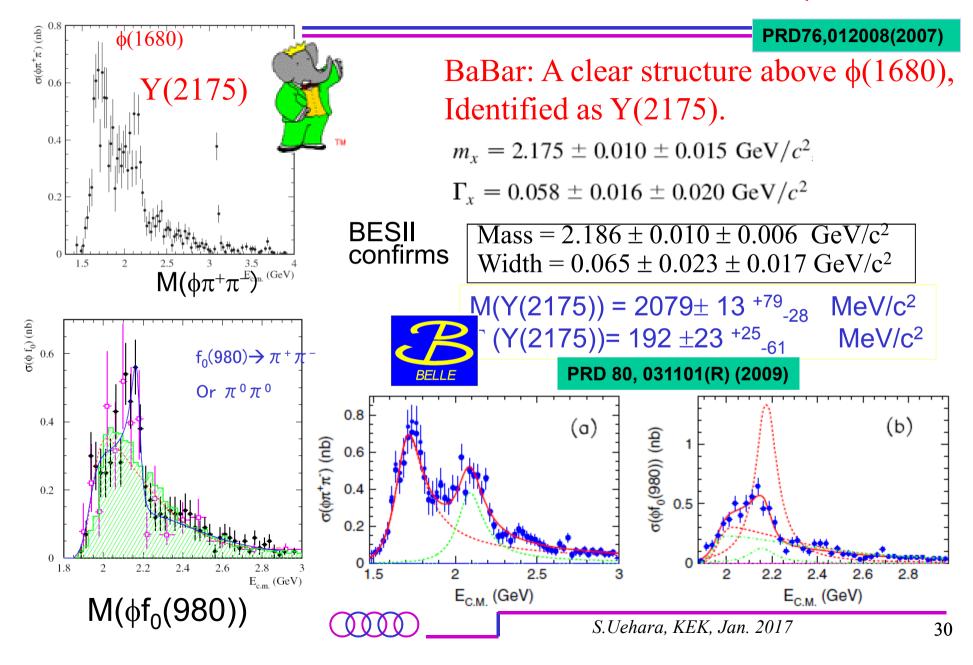
(That is possible between the J=2(2P) and J=4(1F) states.)




$\gamma\gamma \rightarrow \eta'\pi^+\pi^-$

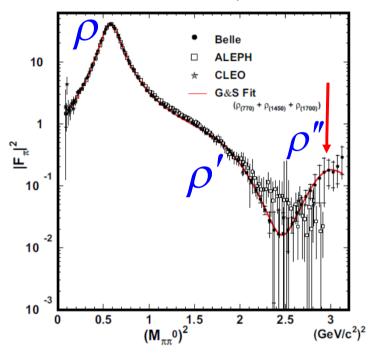
Production of light-quark mesons decaying to the three pseudoscalar meson final **state**. (The η_c production is also presented.) Belle, PRD 86, 052002 (2012)

X(1835) is an exotic resonance candidate found in the radiative decay of J/ψ Is it gluon-rich, or qq-rich? by BES.


> A hint of $X(1835) - 2.8\sigma$, but it is not very significant.

Parameter	Two interfering Solution I	g resonances Solution II	Reference
	X(183	35)	
M , MeV/ c^2	1836.5 (fixed)	$1836.5 \pm 3.0^{+5.6}_{-2.1}$
Γ , MeV/ c^2	190 (fi:	xed)	$190 \pm 9^{+38}_{-36}$
$\Gamma_{\gamma\gamma}\mathcal{B}$, eV/ c^2	$18.2^{+7.7}_{-6.7} \pm 4.0$	$35^{+12}_{-13} \pm 8$	
$(\Gamma_{\gamma\gamma}\mathcal{B})_{90} \text{ eV}$	<35.6	<83	
S, σ	2.8		
	$\eta(1760)$))	
M , MeV/ c^2	1703^{+12}_{-11}	± 1.8	1756 ± 9
Γ , MeV/ c^2	42^{+36}_{-22}	± 15	96 ± 70
$\Gamma_{\gamma\gamma}\mathcal{B}$, eV/ c^2	$3.0^{+2.0}_{-1.2} \pm 0.8$	$18^{+13}_{-10} \pm 5$	
S, σ	4.1		
ϕ	(287 ⁺⁴² ₋₅₁)°	$(139^{+19}_{-9})^{\circ}$	

Exotic in $s\overline{s}$ sector ?; (ISR) $e^+e^- \rightarrow Y(2175) \rightarrow \phi \pi^+ \pi^-$

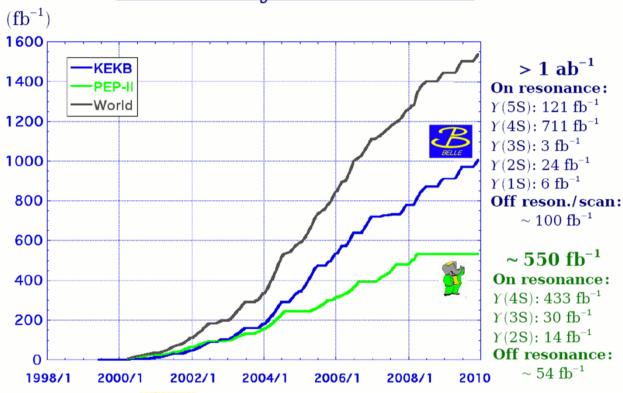


ρ (1700) in $\tau^- \rightarrow \pi^- \pi^0 \nu$ Decay

PRD 78, 072006 (2008)

From 64M $\tau^+\tau^-$ pairs, Belle

selects 5.5M $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$ events!



- Error bars include both statistical and systematic
- ■Interference between ρ ' and ρ "
- Fit with BW

Fit parameter	Norm fixed
Norm $\left \mathbf{F}_{\pi}(0)\right ^2$	[1.0]
M_{ρ} (MeV)	774.6±0.2±0.5
Γ_o (MeV)	148.1±0.4±1.7
$M_{\rho'}$ (MeV)	1446±7±28
$\Gamma_{ ho'}$ (MeV)	434±16±60
eta	$0.15 \pm 0.05 \pm ^{0.15}_{0.04}$
$\phi_{\scriptscriptstyle B}$ (degree)	$202 \pm 4 \pm_{8}^{41}$
$M_{o''}$ (MeV)	1728±17±89
$\Gamma_{\rho''}$ (MeV)	164 ± 21 ± 89 26
γ	$0.028 \pm 0.020 \pm {}^{0.059}_{0.009}$
$\phi_{_{\gamma}}$ (degree)	24 ± 9 ± 118 28
χ^2 /d.o.f	80/52
S.Lahara	*

History of integrated luminosity at Belle

The Belle experiment started

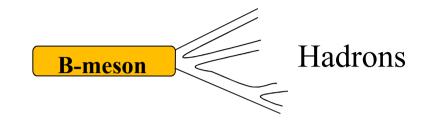
CP violation in B mesons was verified and the KEKB accelerator achieved the world's highest luminosity Anomalous CP violation in $b \rightarrow s$ was measured

The $B \rightarrow KII$ decay was discovered

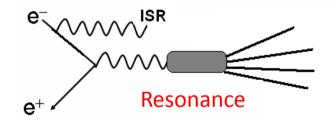
The New particle X (3872) was discovered

Direct violation of CP in B \rightarrow K $_{\pi}$ was found. The B \rightarrow $\rho\gamma$ decay was discovered

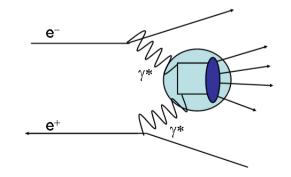
 $B \to \tau_V$ was observed


D meson mixing was discovered. A new particle composed of 4 quarks Z (4430) + was discovered

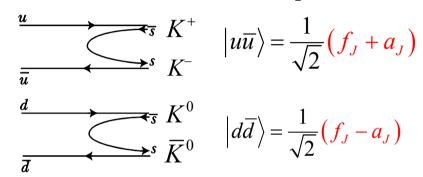
Dr. Makoto Kobayashi and Dr. Toshihide Maskawa were awarded the Nobel Prize in Physics


The Belle experiment was completed

Introduction: Hadron production processes at B-factory Experiments


Hadronic decays of B meson

e⁺e⁻ annihilation processes
ISR processes
→

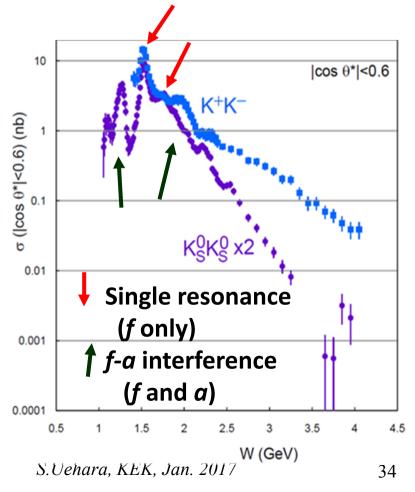

two-photon collisions

Nature of I=0 and I=1 interference in \overline{KK}

- Consider both isospin I=0 and I=1, e.g., f_J and a_J
- Their Constructive and Destructive interference based on OZI (Okubo-Zweiglizuka) rule and isospin I_7 inversion.

 D. Faiman, H.J. Lipkin and H.R. Rubinstein, PL 59B,269 (1975)

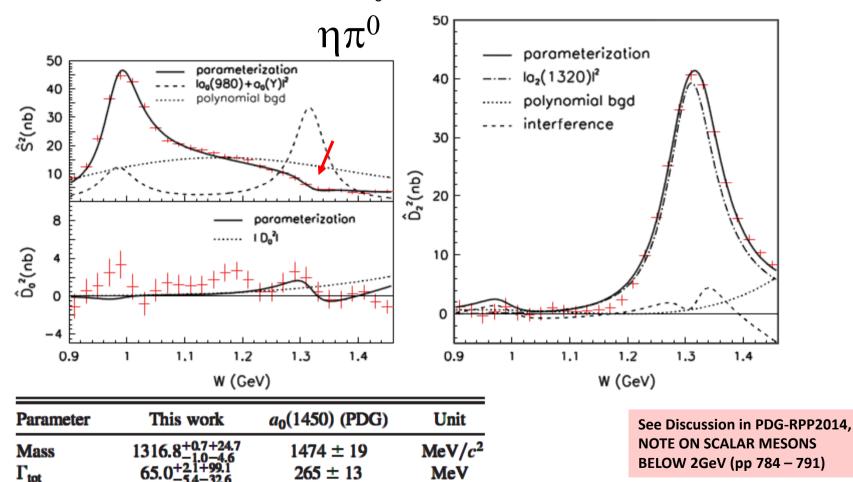
Size of the cross sections for K⁺K⁻ and K⁰K⁰


A single resonance production of **f** or **a** decaying with the strong interaction

→ The cross sections are **similar size**.

If they are very different \rightarrow

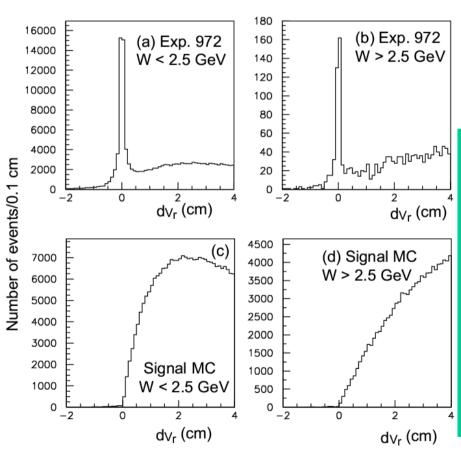
Interference between *I*=0 and *I*=1 resonances, or effective (electromagnetic) continuum production


The difference above >~2.4GeV is explained by electric-charge difference of the quarks.

The *I*=1 sector

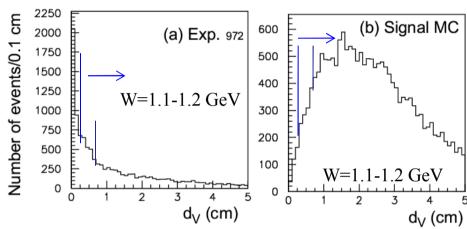
- We find $a_0(1320) \rightarrow \eta \pi^0$ just under $a_2(1320)$.
- The mass is not compatible with $a_0(1450)$?

 $\Gamma_{\gamma\gamma}\mathcal{B}(\eta\pi^0)$

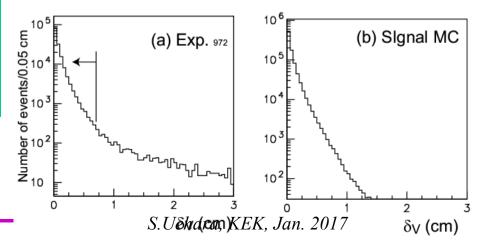


eV

unknown

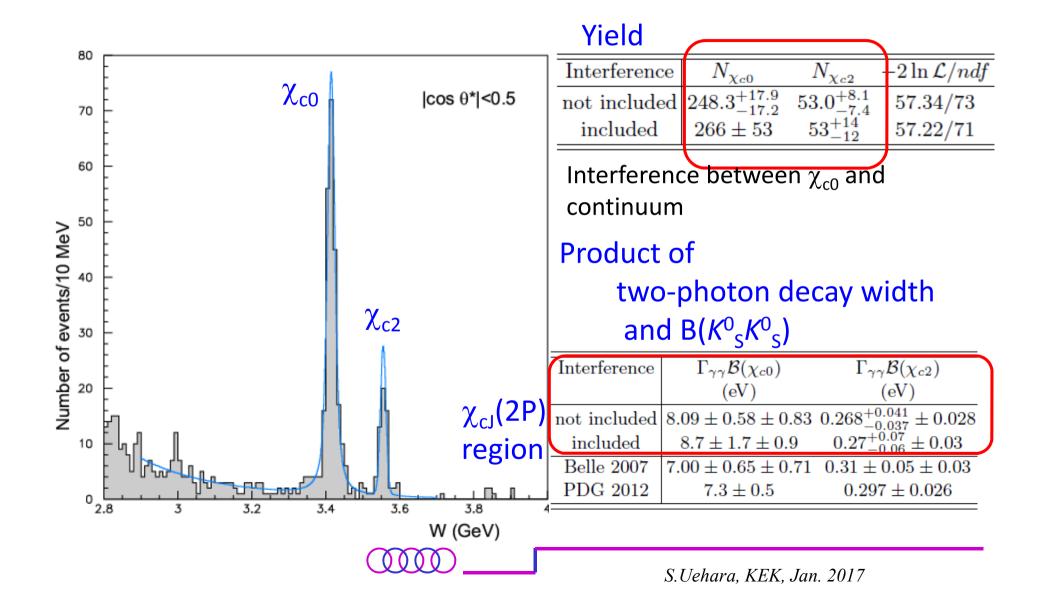

Ks Ks vertex distances

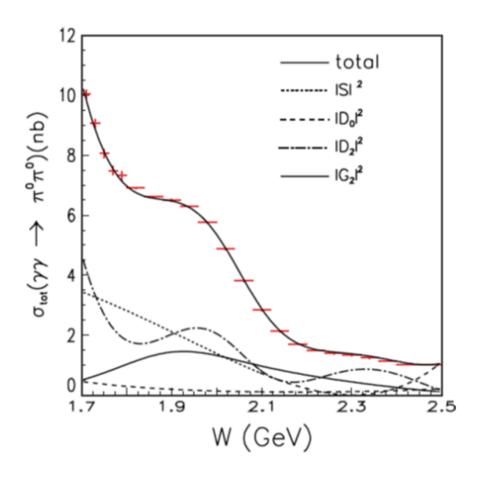
2D vertex distance



Sharp peaks near 0cm seen only in Exp.are from Direct $4\pi (\pi^+\pi^-\pi^+\pi^-)$ production backgrounds.

3D vertex distance

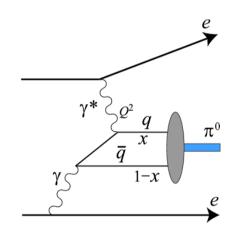

Tr. mometum diff. and vertex position diff. must be in parallel


Fit results for 13 assumptions

		•	
Assumption	No. of sol.	χ^2	ndf
f_0 - f_0	2	293.3, 293.9	214
f_0 - f_2	4	$320.9,\ 321.9,\ 324.5,\ 327.6$	214
f_0 - f_4	1	291.4	214
f_2 - f_0	1	228.3	214
f_2 - f_2	1	260.4	214
f_2 - f_4	1	323.6, 306.7	214
f_4 - f_0	1	411.6	214
f_4 - f_2	2	468.6, 472.1	214
f_4 - f_4	4	$459.6,\ 464.1,\ 466.4,\ 467.5$	214
Only- f_0	1	390.0	218
Only- f_2	1	323.6	218
Only- f_4	1	518.7	218
No resonances	1	659.32	222

Charmonia χ_{c0} and χ_{c2}

Fit to $\pi^0 \pi^0$ (W = 1.7 – 2.5 GeV)

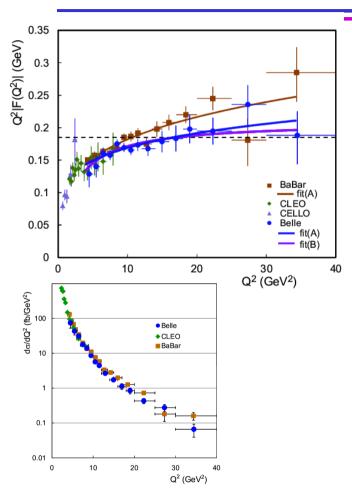

Parameter	$f_4(2050)$	"f ₂ (1950)"	Unit
Mass $\Gamma_{ ext{tot}}$ $\Gamma_{ ext{tot}}$ $\Gamma_{\gamma\gamma}\mathcal{B}(\pi^0\pi^0)$	$1885_{-13}^{+14} \stackrel{+218}{_{-25}} \\ 453 \pm 20 \stackrel{+31}{_{-129}} \\ 7.7_{-1.1}^{+1.2} \stackrel{+23.5}{_{-5.2}}$	$\begin{array}{c} 2038^{+13}_{-11}{}^{+12}_{-73} \\ 441^{+27}_{-25}{}^{+28}_{-192} \\ 54^{+23}_{-14}{}^{+379}_{-68} \end{array}$	MeV/c² MeV eV
$\chi^2(ndf)$	323.2 (311)		

π^0 Transition Form Factor

PRD 86, 092007 (2012)

Coupling of neutral pion with two photons Good test for QCD at high Q²

Single-tag π^0 production in two-photon process with a large-Q² and a small-Q² photon


Theoretically calculated from pion distribution amplitude and decay constant $F(Q^2) = \frac{\sqrt{2}f_{\pi}}{3} \int T_H(x,Q^2,\mu) \phi_{\pi}(x,\mu) dx$

Measurement:

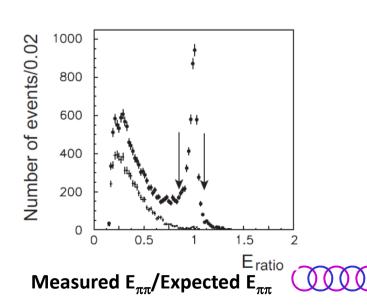
$$|F(Q^2)|^2 = |F(Q^2,0)|^2 = (d\sigma/dQ^2)/(2A(Q^2)) \qquad A(Q^2) \text{ is calculated by QED} \\ |F(0,0)|^2 = 64\pi\Gamma_{\gamma\gamma}/\{(4\pi\alpha)^2m_R^3\}$$

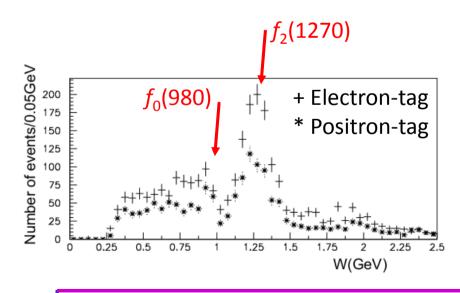
Detects e (tag side) and π^0 Q² = 2EE'(1 – cos θ) from energy and polar angle of the tagged electron

Comparisons with Previous Measurements and Fits

No rapid growth above Q²>9GeV² is seen in Belle result.

~ 2.3σ difference between Belle and BaBar in $9 - 20 \text{ GeV}^2$


```
Fit A (suggested by BaBar)
  Q^{2}|F(Q^{2})| = A (Q^{2}/10GeV^{2})^{\beta}
BaBar: —
 A = 0.182 \pm 0.002 (\pm 0.004) \text{ GeV}
  \beta = 0.25 \pm 0.02
                            BaBar, PRD 80, 052002 (2009)
Belle: —
 A = 0.169 \pm 0.006 \text{ GeV}
 \beta= 0.18 \pm 0.05
 \chi^2/ndf = 6.90/13 ~1.5\sigma difference from BaBar
Fit B (with an asymptotic parameter)
  Q^2|F(Q^2)| = BQ^2/(Q^2+C)
Belle: —
  B = 0.209 \pm 0.016 \text{ GeV}
  C = 2.2 \pm 0.8 \text{ GeV}^2
  \chi^2/ndf = 7.07/13
 B is consistent with the QCD value (0.185GeV)
```


Selection of the $\pi^0\pi^0$ signals

Important selection criteria:

One electron and two π^{0} 's

Three-body kinematics for tagged-e, untagged-e and the $\pi^0\pi^0$ system Small acoplanarity angle and pt-balance for tagged-e and the $\pi^0\pi^0$

