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Color transparency (CT)  is the necessary condition for extracting  
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CT = squeezing + freezing,  experimental confirmations
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Studies of the diffraction at HERA stimulated derivation of new QCD factorization theorems.  In difference 
from derivation in the  inclusive case which  used closure, main ingredient is the color transparency(CT)  
property of QCD. CT = smallness of the interaction of small color singlets with media.

π + T (A, N) → jet1 + jet2 + T (A, N) Frankfurt, Miller, MS 93 & 03

�� + N � � + N(baryonic system)

��L + N � ”meson”(mesons) + N(baryonic system)

D.Muller 94 et al, Radyushkin 96, Ji 96, Collins &Freund 98

Brodsky,Frankfurt, Gunion,Mueller, MS
 94- vector mesons, small x

Collins, Frankfurt, MS 97 -  general case

provide  new effective tools for study of the 3D 
hadron structure,  color transparency, etc

Hard Exclusive processes
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element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�

⇥⇥
�⌥

⌥ dy�

4⌃
e�ix2p

⇤y�
⇥p��T⌦̄⇤0,y�,0T�✏

⇤P⌦⇤0 ��p�,

⇤4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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iandjthatconnectthehardscatteringtothedistribution

functionandtothemeson.Sincethemesonhasnonzero

flavor,thepartonjisrestrictedtobeaquark.Thefactoriza-

tiontheoremEq.⇤3�isillustratedinFig.1.
Theaboveformulaiscorrectfortheproductionoflongi-

tudinallypolarizedvectormesons.Fortheproductionof

transverselypolarizedvectormesonsorofpseudoscalarme-

sons,wehaveaformulaofexactlythesamestructure,butin

whichtheunpolarizedpartondensityisreplacedbyapolar-

izedpartondensity⇤thetransversitydensityfortransverse

vectormesons,andthehelicitydensityforpseudoscalarme-

sons�.Similarchangeswillneedtobemadetothedefinition

ofthemesonwavefunction. Theparameter⌅inEq.⇤3�istheusualrenormalization-

factorizationscale.ItshouldbeoforderQ,inorderthatthe

hardscatteringfunctionH
ijbecalculablebytheuseof

finite-orderperturbationtheory.The⌅dependenceofthe

distributionfi/pandofthelight-conewavefunction↵
j
V

are

givenbyequationsoftheDokshitzer-Gribov-Lipatov-

Altarelli-Parisi⇤DGLAP�kind,aswewilldiscussinSec.

VIII.
TypicallowestordergraphsforHareshowninFig.2.

ConsiderFig.2⇤a�,allofwhoseexternallinesarequarks.

Afterwegothroughthederivationofthefactorizationtheo-

rem,andhaveconstructeddefinitionsofthedistributionfi/p

andofthelight-conewavefunction↵V
,wewillbeableto

seethatthedefinitionofHisthesumofgraphssuchasFig.

2⇤a�contractedwithsuitableexternallinefactorsthatcorre-

spondtotheDiracwavefunctionsofthepartons.Inthecase

oflongitudinalvectormesonproduction,thefactorsare

1
2p⇤✏�

forthelowertwolinesand1
2V�✏⇤

forthelines

connectedtotheoutgoingmeson.Thesefactorsarerelatedto

spinaveragesofDiracwavefunctionsforthequarks.

Inthecaseofthegluon-inducedsubprocess,Fig.2⇤b�,the

externalfermionlinesofHaretobecontractedwiththe

samefactorsasbefore,butthetwogluonlinesaretobe

contractedwith⇧ �/2,where and�aretransverseindices,

andthe1/2representsakindofspinaverage.

SeeSec.IXformoreinformationontheprecisenormal-

izationconventionsforthehardscatteringfunction. B.Definitionsoflight-conedistributionsandamplitudes:

Longitudinalvectormeson
1.Quarkdistribution Thedistributionfunctionfi/pandmesonamplitude↵

j
V

aredefined,asusual,asmatrixelementsofgauge-invariant

bilocaloperatorsonthelightcone.Inthecaseofaquarkof

flavori,wedefine

fi/p⇤x1,x2,t,⌅�

⇥⇥
�⌥

⌥dy�

4⌃e�ix2p
⇤

y�

⇥p��T⌦̄⇤0,y�
,0T�✏⇤P⌦⇤0��p�,

⇤4�
wherePisapath-orderedexponentialofthegluonfield

alongthelightlikelinejoiningthetwooperatorsforaquark

offlavori.Wehavedefinedx1tobethefractionalmomen-

tumgivenbythequarktothehardscatteringand�x2tobe

themomentumgivenbytheantiquark;inthefactorization

theoremtheyobeyx1�x2⇥x,withxbeingtheusual

Bjorkenvariable.Atfirstsighttheright-hand-sideofEq.⇤4�

appearstodependonlyonx2andnotonx1noront.The

dependenceontheothertwovariablescomesfromthefact

thatthematrixelementisnonforward.Thedifferenceinmo-

mentumbetweenthestates�p�and�p��togetherwiththe

useofalight-coneoperatorbringsindependenceonx1and

ont.Itisnecessarytotakeonlytheconnectedpartofthe

matrixelement.
Thesamedefinitionhasrecentlybeengivenanddiscussed

byJiandRadyushkin�12–14�.AsJipointsout,whent⇣0

thereareinfacttwoseparatepartondensities,withdifferent

dependenceonthenucleonspin.Forthepurposesofour

proof,itwillbeunnecessarytotakethisintoaccountexplic-

itly;wecansimplysupposethatthisandtheotherparton

densitieshavedependenceonthespinstateofthehadron

states�p�and�p��. Theusualquarkdensityfi/p(x,⌅)isobtainedbysetting

t⇥0andx1⇥x2⇥xinEq.⇤4�.Inaddition,itwouldappear

thatonehastoremovethetime-orderingoperationfromthe

operatoroperatorsinEq.⇤4�toobtaintheoperatorusedfor

thepartondensitiesassociatedwithinclusivescattering�17�.

Weneedtime-orderedoperatorsinourpresentworkbecause

4
Infact,ourwholepaperappliestoamoregeneralcase.The

final-stateprotoninEq.⇤1�maybereplacedbyageneralbaryon:a

neutron,forexample.Thentheexchangedobjectnolongerhasto

havevacuumquantumnumbers.Theindexiinthefactorization

theoremisthentobereplacedbyapairofindicesfortheflavorsof

thetwoquarklinesjoiningthepartondensityfi/ptothehardscat-

tering.Similarly,thetwoquarklinesenteringthemesonmaybe

different,andtheindexjistobereplacedbyapairofindices.

FIG.2.Typicallowest-ordergraphsforH.

FIG.1.Factorizationtheorem.
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element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�

⇥⇥
�⌥

⌥ dy�

4⌃
e�ix2p

⇤y�
⇥p��T⌦̄⇤0,y�,0T�✏

⇤P⌦⇤0 ��p�,

⇤4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�

⇥⇥
�⌥

⌥ dy�

4⌃
e�ix2p

⇤y�
⇥p��T⌦̄⇤0,y�,0T�✏

⇤P⌦⇤0 ��p�,

⇤4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�

⇥⇥
�⌥

⌥ dy�

4⌃
e�ix2p

⇤y�
⇥p��T⌦̄⇤0,y�,0T�✏

⇤P⌦⇤0 ��p�,

⇤4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�

⇥⇥
�⌥

⌥ dy�

4⌃
e�ix2p

⇤y�
⇥p��T⌦̄⇤0,y�,0T�✏

⇤P⌦⇤0 ��p�,

⇤4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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partonic scattering process, which is calculable in powers of . The indices label

the different parton species. The contribution of diagrams in which the hard scattering process

involves more than the minimum number of partons is suppressed by . An important con-

sequence of factorization is that the –dependence of the amplitude rests entirely in the GPD.

Thus, different processes probing the same GPD should exhibit the same –dependence.

4.2 Space–time picture: “Squeezing” of hadrons

The physics of hard exclusive processes at small becomes most transparent when following

the space–time evolution in the target rest frame. As in the case of inclusive scattering, this

approach allows one to expose the limits of the leading–twist approximation, and to quantify

power corrections due to the nite transverse size of the produced meson.

In exclusive vector meson production, , one can identify three distinct stages

in the time evolution in the target rest frame. The virtual photon dissociates into a dipole

of transverse size at a time coh before interacting with the

target, cf. Eq. (3). The dipole then scatters from the target, and “lives” for a time

before forming the nal state vector meson. The difference in the time scales is due to the

smaller transverse momenta (virtualities) allowed by the meson wave function as compared to

the virtual photon.

In the leading logarithmic approximation in QCD , the effects of QCD radiation can

again be absorbed in the amplitude for the scattering of the small–size dipole off the target. It

can be shown by direct calculation of Feynman diagrams that the leading term for small dipole

sizes is proportional to the generalized gluon distribution, eff , where eff

[7]. A simpler approach is to infer the result for the imaginary part of the amplitude from

the expression for the cross section, Eq. (6), via the optical theorem. The imaginary part is

proportional to the generalized gluon distribution at and . At sufciently large
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Figure 4: Factorization of the amplitude of hard exclusive meson production, Eq. (12).
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Presence of color transparency in the process  is 
necessary condition for using it for measurement of GPDs 
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For the process under discussion π-p→l+l- n 

no proof of the factorization theorem so far - hence CT test is especially important

Basic measurements of transparency 

as a function of incident energy,  Q2=M2(l+l-) 

Expectation: TA=1 for large energies and Q2

TA =
�(⇡� +A ! l+l�A⇤)

Z�(⇡� + p ! l+l� + n)
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Brief Summary of CT: squeeze and freeze 

Squeezing:
(a) high energy CT - only condition for CT 

is 
Special final states: diffraction π+A→”two high pt  jets” + A: ✵

✵ Small initial state:  γ*L   - dqq~ 1/Q- in  γ*L + N→ M+ B    

(b) Intermediate energy CT

Freezing is a challenge - small size configurations tend to 
expand away from the interaction point.

two original 
selection 
methods

6

dqq~ 1/pt-
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lcoh~ (0.4- 0.6) fm Eh[GeV]

Quantum 
Diffusion 
model 

of expansion
actually expansion length

Freezing: Main challenge: |qqq>,  |qq> is not an eigenstate of the QCD 
Hamiltonian.  So even if we find an elementary process in which interaction is 
dominated by small size configurations - they are not frozen. They evolve with time - 
expand after interaction to average configurations and contract before interaction  
from average configurations (FFLS88)

-

e
π

e

eA→ eπ A* at large Q

lcoh

⇥PLC(z) =
�

⇥hard +
z

lcoh
[⇥ � ⇥hard]

⇥
�(lcoh � z) + ⇥�(z � lcoh)

7

l
coh

=
2P

h

m2
h⇤ �m2

h

⎨⎧ ⎩0.7 ÷1.1 GeV2

light hadrons

|�PLC(t)⇥ =
1X

i=1

ai exp(iEit) |�i⇥ = exp(iE1t)
1X

i=1

ai exp

✓
i(m2

i �m2
1)t

2P

◆
|�i⇥

π-
e+e-

n

π- A→ e+e- A* at large Q 
and intermediate energies

lcoh

lcoh(pπ=20 GeV) 
=12 fm ~2 RPb
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Experimental situation

☀ γ* +A →π A*   evidence for increase of transparency with Q (Dutta et al 07)

Note that elementary reaction for Jlab kinematics is dominated by ERBL term so γ* N 
interaction is local. γ* does not transform to  qq at a distance   1/mNx before nucleon, like in 

A- dependence checks not only squeezing but small lcoh as well

-

8

In exclusive coherent dijet production pt ~ 1 GeV/c   corresponding to Q2 ~4 pt2~ 4GeV2

seemed to be enough to squeeze the system (though not yet to reach asymptotic  in z distribution)

☺ γ* +A →ρ A*   Jlab data are also  consistent with our predictions with 
the same values of    lcoh.

Mesons

0.7

0.725

0.75

0.775

0.8

0.825

0.85

0.875

0.9

1 2 3 4 5

Q
2
  (GeV/c)

2

! prediction of quantum diffusion model

Glauber m.

Ghent group

Miller &MS

� / A↵

Approved further data taking at Jlab 12

small x  limit. 

data from Jlab experiment 
at 6 GeV, new data 
expected from 11 GeV run
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A∗
Z−1

π−

p n

ρ0
π−

π+

AZ (a)
A∗
Z−1

π−

p n

J/ψ

AZ (b)

FIG. 2. The Feynman graphs describing the amplitudes of the semiexclusive AZ(π−,π+π−)A∗

Z−1

process mediated by ρ0 (a) and AZ(π−, J/ψ)A∗

Z−1 process (b). Thick short-dashed lines denote

π−p → V n transition amplitudes, V = ρ0, J/ψ. Other notations are similar to Fig. 1.

The corresponding transparencies can be expressed as

TV =
1

Z

∫

d3rPπ,surv(b,−∞, z)ρp(r)PV,surv(b, z,+∞) , (9)

with V = ρ, J/ψ. The survival probabilities of the vector mesons are expressed as

PV,surv(b, z,+∞) = exp

⎛

⎝−

+∞
∫

z

dz′σeff
V N(pV , z

′ − z)ρ(b, z′)

⎞

⎠ . (10)

In the case of J/ψ production, since the size of the J/ψ is much smaller than for pion the CT

effects are important. Moreover, the overlap integral in the π−qq̄ vertex may select larger

transverse momenta in the J/ψ wave function. Thus, we evaluate the effective J/ψN cross

section within the quantum diffusion model which gives

σeff
J/ψN (pJ/ψ, z) = σJ/ψN

⎛

⎝

⎡

⎣

z

lJ/ψ
+

⟨n2k2
t ⟩

M2
J/ψ

(

1−
z

lJ/ψ

)

⎤

⎦Θ(lJ/ψ − z) +Θ(z − lJ/ψ)

⎞

⎠ , (11)

similar to Eq.(6) for the πN effective cross section. Note that in the J/ψ case characteristic

kt are much larger than for the pion - on the scale of 0.8 − 1 GeV/c. This means that

the J/ψN cross section is reduced by approximately a factor of 2 at the hard interaction

point. The interaction cross sections of the qq̄ configurations with the nucleon just before

and after the hard interaction should be the same. To match this condition in calculations

of J/ψ production, we have modified the ⟨k2
t ⟩

1/2 value in Eq.(6) for the πN effective cross

section. Since the J/ψN total cross section, σJ/ψN , is not well known, we will apply the

8

PLC

π πΝ

T =

Z
d3r⇢(b, z)P (b, z)

In exclusive coherent dijet production pt ~ 1 GeV/c   corresponding to Q2 ~4 pt2~ 4GeV2

seemed to be enough to squeeze the system (though not yet to reach asymptotic  in z distribution)
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FIG. 4. (color online) Transparency vs Q2 for the (e, e′π+) reaction on 12C, 27Al, 63Cu, and 197Au

targets (panels (a), (b), (c), and (d), respectively) in the collinear kinematics. Dashed lines –

Glauber model, thick (thin) solid lines – quantum diffusion model with ∆M2 = 0.7(1.4) GeV2.

The values of pion momentum are chosen as pπ = 2.793, 3.187, 3.418, 4.077, and 4.412 GeV/c for

Q2 = 1.10, 2.15, 3.00, 3.91 and 4.69, respectively, according to the experimental conditions [13].

The experimental data are from Ref. [13].

GeV2 describes well the transparency for all studied nuclei except the heaviest one, 197Au,

where the calculation with a two times shorter coherence length seems to agree better with

the data. The pion momenta in the JLab experiment [13] are between 2.8 and 4.4 GeV/c

which corresponds to a pion coherence length between 1.6 and 2.5 fm. This is comparable

with the r.m.s. charge radii of light nuclei, ⟨r2⟩1/212C
= 2.46 fm, ⟨r2⟩1/227Al

= 3.05 fm, however,

significantly less than the radii of the heavy ones, ⟨r2⟩1/263Cu
= 3.93 fm, ⟨r2⟩1/2197Au

= 5.33 fm
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Glauber model, thick (thin) solid lines – quantum diffusion model with ∆M2 = 0.7(1.4) GeV2.

The values of pion momentum are chosen as pπ = 2.793, 3.187, 3.418, 4.077, and 4.412 GeV/c for

Q2 = 1.10, 2.15, 3.00, 3.91 and 4.69, respectively, according to the experimental conditions [13].

The experimental data are from Ref. [13].

GeV2 describes well the transparency for all studied nuclei except the heaviest one, 197Au,

where the calculation with a two times shorter coherence length seems to agree better with

the data. The pion momenta in the JLab experiment [13] are between 2.8 and 4.4 GeV/c

which corresponds to a pion coherence length between 1.6 and 2.5 fm. This is comparable

with the r.m.s. charge radii of light nuclei, ⟨r2⟩1/212C
= 2.46 fm, ⟨r2⟩1/227Al

= 3.05 fm, however,

significantly less than the radii of the heavy ones, ⟨r2⟩1/263Cu
= 3.93 fm, ⟨r2⟩1/2197Au

= 5.33 fm

12

π- A→ e+e- (A-1)* at large Q (as well as J/ψ soft (ρ0) final states) and intermediate 
energies was studied by  A.Larionov, MS & M.Bleicher Phys.Rev. C 2016

Assume that in exclusive Drell Yan squeezing is 
the same as in pion exclusive 
electroproduction. Test again that quantum 
diffusion model describes the Jlab data well
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 1- 2 % momentum resolution will be 
sufficient to separate nucleon channel
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FIG. 3. (color online) The longitudinal component of the momentum of outgoing neutron or ∆0

in the reaction π−p → l+l−n(∆0) on proton at rest as a function of the invariant mass squared of

the l+l− pair for several values of the transverse momentum transfer, qt, as indicated. Panels (a),

(b) and (c) correspond to the beam momenta 9, 16 and 20 GeV/c.

invariant mass in a quite violent process π−p → l+l−B with a large momentum transfer to

any charge neutral nucleon or ∆ resonance state B.

To understand the relevant kinematics better, Fig. 3 shows the longitudinal component

of the momentum transfer to the target, −qz, as a function of the invariant mass squared of

the dilepton pair for several beam momenta. This is expressed by the relation

M2
l+l− = m2

π +m2
B −m2

p − 2(Eπ +mp)(
√

m2
B + q2 −mp)− 2plabq

z , (15)

10

The longitudinal component of the momentum of outgoing 
neutron or ∆0 in the reaction π−p → l+l−n(∆0) on proton at 
rest as a function of the invariant mass of the l+l− pair for 
several values of the transverse momentum transfer and 
beam momentum as indicated. 

q3(�)� q3(n) ⇡ 300MeV/c

Kinematics: residual system is nearly at rest but difference of longitudinal momenta 
for proton and even lowest excitation is significant recoiling particle is nucleon  

Comment: pion and leptons carry very 
small light cone fraction in “-” direction. So 
resolution in this variable is very good even if 
momentum resolution is moderate
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AZ A∗
Z−1

π−

p n

γ∗ l−

l+

FIG. 1. The Feynman graph describing the amplitude of the semiexclusive AZ(π−, l+l−)A∗

Z−1

process. Thin short-dashed lines represent the pion-nucleon soft elastic scattering amplitudes,

while a thick short-dashed line represents the transition amplitude π−p → γ∗n. The gray ellipsoids

correspond to the wave functions of the initial ground state nucleus AZ and final excited nucleus

A∗

Z−1.

2. MODEL

The process of exclusive l+l−-pair production in the interaction of a π−-meson with a

nucleus is shown in Fig. 1. We will assume that the momentum transfer in the p → n

transition is small, i.e. of the order of a few hundred MeV/c. (See Fig. 3 and discussion

in Sec. 3 below.) Thus, the outgoing nucleon system can be viewed as an excited state

of the AZ−1 nucleus. The amplitude of Fig. 1 can be calculated within the generalized

eikonal approximation [24–26]. By keeping only absorptive terms in the expansion of the

matrix element squared (i.e. neglecting the terms, where soft pion rescattering occurs on the

same nucleon in the direct and conjugated amplitudes, which is a good approximation for

small transverse momenta of the dilepton pair) the differential cross section of the dilepton

production on the nucleus can be expressed as

d4σπ−A→l−l+

d4q
= v−1

π

∫

d3rPπ,surv(b,−∞, z)
∫ d3p

(2π)3
vπp

d4σπ−p→l−l+n

d4q

Z
∑

j=1

fj(r,p) , (1)

where q = pl− + pl+ − pπ is the four-momentum transfer to the dilepton pair, vπ = plab/Eπ

is the pion velocity in the laboratory system, Eπ =
√

m2
π + p2lab is the pion energy, vπp =

√

(pπp)2 −m2
πm

2
p/EπEp is the relative velocity of the pion and the target proton, and

fj(r,p) =
∫

d3r′φ∗

j(r+ r′/2)φj(r− r′/2)eipr
′

(2)

5

A∗
Z−1

π−

p n

ρ0
π−

π+

AZ (a)
A∗
Z−1

π−

p n

J/ψ

AZ (b)

FIG. 2. The Feynman graphs describing the amplitudes of the semiexclusive AZ(π−,π+π−)A∗

Z−1

process mediated by ρ0 (a) and AZ(π−, J/ψ)A∗

Z−1 process (b). Thick short-dashed lines denote

π−p → V n transition amplitudes, V = ρ0, J/ψ. Other notations are similar to Fig. 1.

The corresponding transparencies can be expressed as

TV =
1

Z

∫

d3rPπ,surv(b,−∞, z)ρp(r)PV,surv(b, z,+∞) , (9)

with V = ρ, J/ψ. The survival probabilities of the vector mesons are expressed as

PV,surv(b, z,+∞) = exp

⎛

⎝−

+∞
∫

z

dz′σeff
V N(pV , z

′ − z)ρ(b, z′)

⎞

⎠ . (10)

In the case of J/ψ production, since the size of the J/ψ is much smaller than for pion the CT

effects are important. Moreover, the overlap integral in the π−qq̄ vertex may select larger

transverse momenta in the J/ψ wave function. Thus, we evaluate the effective J/ψN cross

section within the quantum diffusion model which gives

σeff
J/ψN (pJ/ψ, z) = σJ/ψN

⎛

⎝

⎡

⎣

z

lJ/ψ
+

⟨n2k2
t ⟩

M2
J/ψ

(

1−
z

lJ/ψ

)

⎤

⎦Θ(lJ/ψ − z) +Θ(z − lJ/ψ)

⎞

⎠ , (11)

similar to Eq.(6) for the πN effective cross section. Note that in the J/ψ case characteristic

kt are much larger than for the pion - on the scale of 0.8 − 1 GeV/c. This means that

the J/ψN cross section is reduced by approximately a factor of 2 at the hard interaction

point. The interaction cross sections of the qq̄ configurations with the nucleon just before

and after the hard interaction should be the same. To match this condition in calculations

of J/ψ production, we have modified the ⟨k2
t ⟩

1/2 value in Eq.(6) for the πN effective cross

section. Since the J/ψN total cross section, σJ/ψN , is not well known, we will apply the

8

The Feynman graph describing the amplitude of the semiexclusive AZ(π−,l+l−)A∗Z−1  and   ρ0, J/ψ  
processes. Thin short-dashed lines represent the pion (ρ0)-nucleon soft elastic scattering 
amplitudes, while a thick short-dashed line represents the transition amplitudeσ π−p → γ∗n. The 
gray ellipsoids correspond to the wave functions of the initial ground state nucleus AZ and final 
excited nucleus  A∗Z − 1 .
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} Glauber

2. MODEL

The process of the l−l+-pair production by negative pion interaction with nucleus is

shown in Fig. 1. We will assume that the momentum transfer in the p → n transition is

small, of the order of few hundreds MeV/c. (See Fig. 3 and discussion in sec.3 below.) Thus,

the outgoing nucleon system can be viewed as an excited state of the AZ−1 nucleus. The

amplitude of Fig. 1 can be calculated within the generalized eikonal approximation [13–

15]. By keeping only absorptive terms in the expansion of the matrix element squared (i.e.

neglecting the terms, where pion soft rescattering occurs on the same nucleon in the direct

and conjugated amplitudes, which is a good approximation for small transverse momenta

of the dilepton pair) the differential cross section of the dilepton production on the nucleus

can be expressed as

d4σπ−A→l−l+

d4q
= v−1

π

∫

d3rPπ,surv(b,−∞, z)
∫ d3p

(2π)3
vπp

d4σπ−p→l−l+n

d4q

Z
∑

j=1

fj(r,p) , (1)

where q = pl− + pl+ − pπ is the four-momentum transfer to the dilepton pair, vπ = plab/Eπ

is the pion velocity in the laboratory system, Eπ =
√

m2
π + p2lab is the pion energy, vπp =

√

(pπp)2 −m2
πm

2
p/EπEp is the relative velocity of the pion and the target proton, and

fj(r,p) =
∫

d3r′φ∗

j(r+ r′/2)φj(r− r′/2)eipr
′

(2)

is the Wigner density of the occupied proton state j including orbital and spin quantum

numbers. We neglect spin-flip transitions. Thus, the trace over spin variables of the single-

particle wave functions is assumed in Eq.(2). In Eq.(1), the depletion of the pion flux is

accounted for by the pion survival probability

Pπ,surv(b,−∞, z) = exp

⎛

⎝−σπN

z
∫

−∞

dz′ρ(b, z′)

⎞

⎠ , (3)

where σπN is the total pion-nucleon cross section and ρ(b, z′) is the nucleon density. Eq(1)

is derived by summing over complete set of the wave functions of the final nuclear system

A∗

Z−1. (The Pauli blocking for the outgoing neutron is automatically included as the wave

functions of the complete set are antisymmetric.)

In the simplest approximation the Fermi motion can be neglected. Thus, the proton

momentum in the relative velocity vπp and in the elementary cross section d4σπ−p→l−l+n/d4q

4

can be set to zero, i.e the target proton is assumed to be quasifree. This leads us to the

classical formula for the nuclear transparency

Tl−l+ =
d4σπ−A→l−l+/d4q

Zd4σπ−p→l−l+n/d4q
=

1

Z

∫

d3rPπ,surv(b,−∞, z)ρp(r) , (4)

where

ρp(r) =
∫ d3p

(2π)3

Z
∑

j=1

fj(r,p) (5)

is the proton density.

Until this point we discussed the classical Glauber picture which has no any features of

the quark structure of the pion. In factorization approches, the internal structure of a meson

is described by its light-cone wave function encoding the QCD dynamics. The general proof

of factorization for the electroproduction of mesons by the longitudinally polarized photons

[4] is valid for production of any mesons and as a part of the proof the dominance of small

size configurations in the discussed process was demonstrated. Thus, the CT should also

exist for this class of processes. As we mentioned above so far no proof of factorization was

put forward for the case of dilepton production in meson-induced reactions. However, there

exist experimental indications that squeezing is a more general phenomenon. For example,

squeezing seems to be present for the production of ρ mesons by transversely polarized

photons. So for our estimates we will assume that the basic mechanism of CT is similar to

the case of meson electroproduction, though in principle there maybe a difference between

squeezing in the case of longitudinally and transversely polarized photon. The momentum

scale of M2
l+l− governs the degree of the shrinkage of the transverse size of the meson while it

approaches the interacting proton of the target. Such transversely squeezed pion (which can

be considered as a small color qq̄ dipole) interacts with nucleon with the effectively reduced

cross section which can be evaluated within the quantum diffusion model [16] as follows:

σeff
πN(pπ, z) = σπN(pπ)

([

z

lπ
+

< n2k2
t >

M2
l+l−

(

1−
z

lπ

)

]

Θ(lπ − z) +Θ(z − lπ)

)

. (6)

Here n = 2 is the number of valence (anti)quarks, < k2
t >1/2≃ 0.35 GeV/c is the average

transverse momentum of a quark in a hadron, and

lπ =
2plab
∆M2

(7)

is the pion coherence length. We will use the value ∆M2 = 0.7 GeV2 in default calculations.

z is the longitudinal distance between the hard production point and the point, where the
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can be set to zero, i.e the target proton is assumed to be quasifree. This leads us to the
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Until this point we discussed the classical Glauber picture which has no any features of

the quark structure of the pion. In factorization approches, the internal structure of a meson

is described by its light-cone wave function encoding the QCD dynamics. The general proof

of factorization for the electroproduction of mesons by the longitudinally polarized photons

[4] is valid for production of any mesons and as a part of the proof the dominance of small

size configurations in the discussed process was demonstrated. Thus, the CT should also

exist for this class of processes. As we mentioned above so far no proof of factorization was

put forward for the case of dilepton production in meson-induced reactions. However, there

exist experimental indications that squeezing is a more general phenomenon. For example,

squeezing seems to be present for the production of ρ mesons by transversely polarized

photons. So for our estimates we will assume that the basic mechanism of CT is similar to

the case of meson electroproduction, though in principle there maybe a difference between

squeezing in the case of longitudinally and transversely polarized photon. The momentum

scale of M2
l+l− governs the degree of the shrinkage of the transverse size of the meson while it

approaches the interacting proton of the target. Such transversely squeezed pion (which can

be considered as a small color qq̄ dipole) interacts with nucleon with the effectively reduced

cross section which can be evaluated within the quantum diffusion model [16] as follows:

σeff
πN(pπ, z) = σπN(pπ)

([

z

lπ
+

< n2k2
t >

M2
l+l−

(

1−
z

lπ

)

]

Θ(lπ − z) +Θ(z − lπ)

)

. (6)

Here n = 2 is the number of valence (anti)quarks, < k2
t >1/2≃ 0.35 GeV/c is the average
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Z−1

π−

p n

ρ0
π−

π+

AZ (a)
A∗
Z−1

π−

p n

J/ψ

AZ (b)

FIG. 2. The Feynman graphs describing the amplitudes of the semiexclusive AZ(π−,π+π−)A∗

Z−1

process mediated by ρ0 (a) and AZ(π−, J/ψ)A∗

Z−1 process (b). Thick short-dashed lines denote

π−p → V n transition amplitudes, V = ρ0, J/ψ. Other notations are similar to Fig. 1.

pion interacts with the nucleon. Note that Eq.(6) is applicable not only in the cases when

the pion was produced in the hard process, but also when the hard process was induced by

incoming pion. The differential cross section of dilepton production on the nucleus and the

transparency can be generalized for the processes with CT by replacing the pion-nucleon

cross section by the effective one in the pion survival probability (3) as

PCT
π,surv(b,−∞, z) = exp

⎛

⎝−

z
∫

−∞

dz′σeff
πN(pπ, z − z′)ρ(b, z′)

⎞

⎠ . (8)

The process AZ(π−, l+l−)A∗

Z−1 with large invariant mass of l+l− pair represents a clean

way to measure CT for the incoming pion. It is also possible to study other final states in

the π−-nucleus reactions with charge exchange in similar kinematical conditions. Two of

such channels, AZ(π−, π+π−)A∗

Z−1 with intermediate ρ0 and AZ(π−, J/ψ)A∗

Z−1, are shown

in Fig. 2. These two reactions could provide complementary information to the already

existing studies of the ρ [10, 17–19] and J/ψ [6, 20–27] attenuation in the nuclear medium.

The corresponding transparencies can be expressed as

TV =
1

Z

∫

d3rPπ,surv(b,−∞, z)ρp(r)PV,surv(b, z,+∞) , (9)

with V = ρ, J/ψ. The survival probabilities of the vector mesons are expressed as

PV,surv(b, z,+∞) = exp

⎛

⎝−

+∞
∫

z

dz′σeff
V N(pV , z

′ − z)ρ(b, z′)

⎞

⎠ . (10)

6

}Quantum
 diffusion model

with assumption of
the same squeezing 

at positive and 
negative Q2

Note: we consider the limit x= M2/s >0.1  where lepton pair is 
produced practically in the interaction point
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FIG. 5. Transparency vs pion beam momentum for the (π−, l+l−) reaction at fixed M2
l+l− = 4

GeV2 on 12C, 27Al, 63Cu, and 197Au targets. Dashed lines – Glauber model, thick (thin) solid lines

– quantum diffusion model with ∆M2 = 0.7 (1.4) GeV2.

in the point-like configuration across its trajectory within the nucleus, while for the 197Au

nucleus the pion dynamics is still in the region of quantum diffusion.

Fig. 7 shows the mass dependence of the transparency for the (π−, l−l+) reaction at the

fixed values of beam momentum, plab = 16 GeV/c, and l+l− invariant mass, M2
l+l− = 4 GeV2.

We performed the fits of the calculated mass number dependence of the transparency by the

power law

T ≃ Aα−1 . (17)

The Glauber model results can be well reproduced with α = 0.786 ± 0.003. This is not

so far from the surface dominated production mechanism (α = 2/3). The power law fit of

the quantum diffusion calculation is more poor, although it is clear that the obtained value,

α = 0.904± 0.005, is rather close to the volume dominated production (α = 1).

12

Transparency vs pion beam momentum for the (π−,l+l−) reaction at fixed
 M2 l+ l− = 4 GeV2 on 12C, 27Al, 63Cu, and 197Au targets. 

Large CT effect is predicted for all targets for p≥ 10 GeV/c, with 
modest sensitivity to expansion parameter ΔM2
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FIG. 6. Transparency vs invariant mass squared of the l+l− pair for the (π−, l+l−) reaction at

plab = 16 GeV/c on 12C, 27Al, 63Cu, and 197Au targets. The lines have the same meaning as in

Fig. 5.

In Fig. 8 we display the parameter α of the power law fit (17) as a function of the beam

momentum for several values of M2
l+l− . At the lowest plab = 5 GeV/c the results of the color

diffusion model calculations and the Glauber model results are close to those of Fig. 3 of ref.

[9] at Q2 = 4 GeV2 which can be regarded as a benchmark. There is a significant, ∼ 15%,

enhancement of the slope parameter α at the largest plab = 20 GeV/c due to the CT. The

enhancement depends only weakly on the dilepton invariant mass at M2
l+l−

>
∼ 2 GeV2 (see

also Fig. 6).

4.3. Vector meson production in π−-nucleus reactions

The transparency in π−-induced ρ0 production reaction on different nuclei is shown in

Fig. 9 as a function of beam momentum. Without taking into account ρ-decay inside nucleus

13

Transparency vs invariant mass squared of the l+l− pair at plab = 16 GeV/c 
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FIG. 7. (color online) Target nucleus mass number dependence of the transparency for the

AZ(π−, l+l−)A∗

Z−1 reaction at plab = 16 GeV/c and M2
l+l− = 4 GeV2. The calculations are

done for nuclei 12C, 27Al, 40Ca, 56Fe, 63Cu, 75As, 84Kr, 120Sn, 142Ce, 197Au, and 208Pb. The result

obtained within the quantum diffusion model is shown by solid circles while the Glauber model

result is shown by solid triangles. The fits with a power law of Eq.(17) are shown by lines marked

with the value of α.

4.3. Vector meson production in π−-nucleus reactions

The transparency in π−-induced ρ0 production reactions on different nuclei is shown in

Fig. 9 as a function of beam momentum. Without taking into account ρ-decays inside the

nucleus (i.e. setting Γρ = 0), the transparency is practically constant within the beam

momentum range 10-30 GeV/c. A small increase of the transparency T is caused by slowly

decreasing pion-nucleon cross section with increasing beam momentum, reaching a minimum

of ≃ 23 mb at plab ≃ 50 GeV/c. The ρ-decay inside the nucleus effectively leads to the

replacement of the ρ0 by a π+π− pair which has a total cross section approximately two

times larger than the ρN cross section (Eq.(13)). This strongly reduces the transparency at

low beam momenta. The reduction is especially strong for the heavy nucleus, 197Au, reaching

more than 20% at plab <∼ 10 GeV/c. With increasing beam momentum the influence of the

16

Large difference between Glauber and CT predictions starting with C target 
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In this simplified discussion we neglected  different dynamics for the interaction 
involving longitudinally and transversely polarized virtual photon. 

At large Q2,  σL >> σT and  squeezing for σL  is due to the photon wave function 
while for  σT  contribution of large sizes is suppressed only by Sudakov form factor

Hence naively         T(σT) < T(σL) 

However at HERA no evidence for slower squeezing of ρ-mesons in exclusive 
production was found. Also in the Jlab data contribution of σT is large - still CT 
is observed.
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Related very interesting reaction is exclusive production of J/ψ (χ  - may have 
a  larger cross section but more difficult to detect?) 

Basic expectations: production in the small transverse area  of 
radius ~ r J/ψ  ; pion has to contract to produce onium; J/ψ 
interacts rather weakly with nucleons. CT is very likely and large.  
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FIG. 12. Transparency vs beam momentum for the (π−, J/ψ) reaction on 12C, 27Al, 63Cu, and

197Au targets. The calculations are done within the Glauber and quantum diffusion models by

setting the total J/ψN cross section equal to 4 and 6 mb, as indicated. The curves marked with

’CT’ are calculated taking into account color transparency effects both for incoming pion and

outgoing J/ψ. The curves marked with ’CT pion’ are calculated with the color transparency effect

for the pion only. See also text.

As we see, dropping the CT effect for the outgoing charmonium significantly reduces the

transparency, inparticular for high beam momenta and for the light nuclei. However, for the

197Au nucleus the reduction of the transparency at the beam momenta 10−15 GeV/c is quite

moderate and allows to disentangle various J/ψN cross sections. The fit parameter α for

the J/ψ production reaction is shown in Fig. 13. In a major way, the α(plab) dependencies

are similar for the J/ψ and dilepton production as visible from comparison with Fig. 8.

In the experiment, one could perform the two sets of measurements of the l+l− trans-

parency over range of the pion beam momenta. In the first measurement, one can fix

Ml+l− = MJ/ψ. In the second measurement, one can fix the dilepton mass slightly above the

18
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It is desirable also to study a reference soft process: ⇡� +A ! ⇢0 +A⇤
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FIG. 9. (color online) Transparency vs beam momentum for the (π−, ρ0) reaction on 12C, 27Al,

63Cu, and 197Au targets (panels (a), (b), (c), and (d), respectively). The calculations are performed

with and without ρ decay inside nucleus by setting the total ρN cross section equal to 25 and 20

mb as indicated.

In Fig. 11 we present the beam momentum dependence of the parameter α of the power

law fit for the (π−, ρ0) process. In calculations without ρ-decay, α increases by only 8%,

while the beam momentum grows from 2 to 30 GeV/c. Including ρ-decays inside the nucleus

effectively increases the absorption of ρ’s at low beam momenta, but only slightly alter

the absorption of the high-momentum ρ’s. This makes the parameter α to increase much

stronger, by up to 30%, with the beam momentum.

In the case of J/ψ production in π−-induced reactions, the transparency is displayed in

18

new element - ρ0 decay at moderate energies
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FIG. 10. (color online) Target nucleus mass number dependence of the transparency for the

AZ(π−, ρ0)A∗

Z−1 reaction at plab = 16 GeV/c. The results with (without) ρ-decay inside nucleus

are shown by solid circles (triangles). The fits by a power law (17) are shown by lines labelled by

the value of α. The calculations are done for the same nuclei as in Fig. 7.

Fig. 12. The behaviour of the J/ψ transparency with beam momentum is close to that of

dilepton transparency (cf. Fig. 5), since the J/ψN cross section is small. The effect of the

CT is 5-10 % stronger for the J/ψ transparency than for the dilepton transparency as in the

former case the CT influences both the incoming and outgoing particles. To separate the

effects of the CT on the pion and on J/ψ, we also show in Fig. 12 the calculation with the

cross section in the hard interaction point set equal to the ’normal’ J/ψN cross section (i.e.

to 6 mb). This is equivalent to keeping the CT effect for the pion only. Dropping the CT

effect for the outgoing charmonium significantly reduces the transparency, in particular for

high beam momenta and for the light nuclei. However, for the 197Au nucleus the reduction

of the transparency at the beam momenta 10 − 15 GeV/c is quite moderate and allows to

disentangle various J/ψN cross sections. The power law exponent α for the J/ψ production

reaction is shown in Fig. 13. In general, the α(plab) dependencies are similar for the J/ψ

and dilepton production (cf. Fig. 8).

In the experiment, one could perform the two sets of measurements of the l+l− trans-

19

At what Mll transition from hard to soft regime?

αll=0.9 vs   αρ=0.55

Very large difference in the transparency
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FIG. 7. (color online) Target nucleus mass number dependence of the transparency for the

AZ(π−, l+l−)A∗

Z−1 reaction at plab = 16 GeV/c and M2
l+l− = 4 GeV2. The calculations are

done for nuclei 12C, 27Al, 40Ca, 56Fe, 63Cu, 75As, 84Kr, 120Sn, 142Ce, 197Au, and 208Pb. The result

obtained within the quantum diffusion model is shown by solid circles while the Glauber model

result is shown by solid triangles. The fits with a power law of Eq.(17) are shown by lines marked

with the value of α.

4.3. Vector meson production in π−-nucleus reactions

The transparency in π−-induced ρ0 production reactions on different nuclei is shown in

Fig. 9 as a function of beam momentum. Without taking into account ρ-decays inside the

nucleus (i.e. setting Γρ = 0), the transparency is practically constant within the beam

momentum range 10-30 GeV/c. A small increase of the transparency T is caused by slowly

decreasing pion-nucleon cross section with increasing beam momentum, reaching a minimum

of ≃ 23 mb at plab ≃ 50 GeV/c. The ρ-decay inside the nucleus effectively leads to the

replacement of the ρ0 by a π+π− pair which has a total cross section approximately two

times larger than the ρN cross section (Eq.(13)). This strongly reduces the transparency at

low beam momenta. The reduction is especially strong for the heavy nucleus, 197Au, reaching

more than 20% at plab <∼ 10 GeV/c. With increasing beam momentum the influence of the

16
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Examples of promising hadronic final states:  π- A→ π+π- A*,  pA→ pπ- (A-1)*
for pht (final) > 1.0 GeV 

Idea is to consider new type of hard hadronic processes - branching 
exclusive  processes of large c.m. angle scattering on a “cluster” in a 
target/projectile (MS94). Factorization into blocks like in DIS  could set in much 
lower Q(t) than the limit where pQCD works for elementary process like nucleon 
form factor                          

t’
d

c

b

a

et

s’=(pd+pc)2
-t’ > few GeV2, -t’/ s’ ~1/2 
-t=const ~ 0 
  ➠  s’/s=y<1, 

Limit:

Two papers focused on pp, πp: Kumano, MS, and Sudoh PRD 09;   Kumano &MS Phys.Lett. 10

to study both CT of  2 → 2  and hadron GPDs

DIS exclusive process b=e, d=e’, a=N,c=M(B), e=B(M) is the simplest example

Very briefly
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Since CT is expected to set in earlier for mesons than for baryons 
probably most promising reaction production of two pions back to back  
(the same kinematics as for leptons in  exclusive DY.

π- A→ π+π- A*

P⇡�,in= 16 GeV, P⇡�,fin,t= 1.0 GeV, P⇡+,fin,t= -1.0 GeV

P
⇡

±
,fin,long

= 7.8 GeV

In the regime of CT this reaction measures nondiagonal GPDS

p A→ pπ- A*, p A→ pπ+A*, p A→ pp (A-1)*

reach regime of CT probably at larger t / incident energies, so 
higher energy beams are necessary.
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Conclusions
Study of the A-dependence of  the exclusive DY (J/ψ) (including 

polarization effects) ,  and observation of CT are critical steps for 
testing theory of these reactions & learning how to probe GPDs 
in these processes.

Will improve our understanding of the dynamics of space-
time evolution of wave packets

Probe in a new way J/ψ (χ ?) - nucleon interactions

At least one interesting hadronic process - exclusive production 
of π+π-  takes place in the exclusive DY kinematics
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Supplementary slides on 2 to 3 processes
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Two kinematics - different detector strategies

“a” at rest  - “d” and “c” in forward spectrometer (pd+pc≈ pa )

“e” in recoil detector 
➠ can use both proton and neutron (2H)/ transversely polarized target

“b” at rest  - “d”, “c” and “e” in  forward spectrometer;
e has small transverse momentum while pt’s of d, c are back to back 

25

t’
d

c

b

a

et
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2 →3 branching processes: 

test onset of CT for 2 →2  avoiding  diffusion effects  

measure cross sections of large angle pion - pion (kaon) scattering

probe 5q in nucleon and 4q in mesons

measure GPDs of nucleons and mesons& photons (!)

☀

☀
☀

☀

measure transverse sizes of b, d,c ☀

☀ measure pattern of freezing of space evolution of small size configurations

26
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Factorization:

GPD

N

t ’b
d

e (baryon)

c (meson)

t t

e (meson)N

GPD

t ’b d

c (baryon)

If the upper block is a hard (2 →2 ) process,   “b”, “d”, “c” are in small size configurations as 
well as exchange system (qq, qqq). Can use CT argument as in the proof of QCD factorization 
of  meson  exclusive production in DIS (Collins, LF, MS 97)

⇓
MNN�N�B = GPD(N ⇥ B)� �i

b �H � �d � �c

27
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π

B

p

p

cohl

Minimal condition for factorization:

lcoh > rN � 0.8 fm

lcoh = (0.4 ÷ 0.6 fm) · ph/(GeV/c)
pc ⇥ 3÷ 4 GeV/c, pd ⇥ 3÷ 4 GeV/c

pb ⇥ 6÷ 8 GeV/c

easier to reach than in CT reactions with nuclei

Time evolution of the 2 → 3 process

28
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NP M

P

P P

P

P P

!
qqqqq

,Δ, N*

,Δ, N* , ρ,η, ϕ

, Δ, N*

, Δ, N*

Λ,Σ

K,K*N
P

M

P

P
P

P

P
P

!
q
q

q
q
q

-t/s’~1/2

-t=const
GPD (N→M)

GPD (N→B)

pp� p� + M(⇥, �, ⇥⇥)
pp� p� + K+

��p� p� + M

��p� �����++,

��p� ���+�0,

pp� pN + M(⇥, �,⇥⇥)

��p� ���0p,

COMPASS

Examples

J-PARC  

M=gluonium ??

pp ! p⇡± +B

within 
acceptance 
of DY  exp
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Study of Hidden/Intrinsic Strangeness & Charm in hadrons

pp →Λsp (any other strange baryon)+ K+(K*) + p 

pp → φsp + p + p
pp →Dsp +  Λc+ p 

pp → K(K*)sp + Λ + p

π+p →K+sp +  K0+p 

BNL experiment EVA has 
few candidate events

_

Can one use hadronic projectiles to study  baryo/meso baryonic 

and meso-mesonic  GPDs? Will be especially beneficial to study in parallel 

with 12 GeV program at Jlab (GPD studies is the main trust of their program)

Idea (MS95) is to consider new type of hard hadronic processes - 
branching exclusive  processes of large c.m.angle scattering on a 

“cluster” in a target/projectile or  scattering of two small clusters 

NP M

P

P P

P

P P

!
qqqqq

,!, N*

,!, N*
, ",#, $,gluonium

, !, N*

, !, N*

%,&

K,K*

p

p

pp

Meson

Meson

Baryon

Baryon

N
P

M

P

P
P

P

P
P

!
q
q

q
q
q

-t/s’~1/2

N PM

P

PP

P

PP

!
qq qqq

s’

Could a gluonium be left 
behind when  three quarks in 
a nucleon come close and 
instantaneously removed

NP M
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P P

P

P P
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qqqqq
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P P
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P P
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qqqqq

Λ

p

K+,K+*

Can one use hadronic projectiles to study  baryo/meso baryonic 

and meso-mesonic  GPDs? Will be especially beneficial to study in parallel 

with 12 GeV program at Jlab (GPD studies is the main trust of their program)

Idea (MS95) is to consider new type of hard hadronic processes - 
branching exclusive  processes of large c.m.angle scattering on a 

“cluster” in a target/projectile or  scattering of two small clusters 
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P

P
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Could a gluonium be left 
behind when  three quarks in 
a nucleon come close and 
instantaneously removed
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P
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qqqqq
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_ 
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cf J.C.Peng’s talk at J-PARC workshop 2 years ago
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How to check that squeezing takes place so that  
one can use GPD logic?

Use as example process π-A→π-π± A*

pf(π) = pi(π)/2, vary pft(π) = 1 - 2 GeV/c; pft(π-)+ pft(π±) ~ 0

c
b

d

A

lcoh=60 fm

π- π-

π±

Branching (2→3) processes 
with nuclei - freezing is 100% 
effective for pinc > 100 GeV/c - 
study of one effect only - size of 
fast hadrons

☀ easier to squeeze
☀ COMPASS 190 GeV data on tape

☀ Early data from FNAL

31
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TA =
d⇥(��A����+A⇥)

d�

Z d⇥(��p����+n)
d�

TA( pb,  pc,  pd) =
1
A

�
d3r�A( r)Pb( pb, r)Pc( pc, r)Pd( pd, r)

where                     are three momenta of the incoming  and 
outgoing particles b, c, d; ρA is the nuclear density normalized to

⇤pb, ⇤pc, ⇤pd �
�A(⇧r)d3r = A

Pj( pj , r) = exp
�
�

⇤

path
dz ⇥e�( pj , z)�A(z)

⇥

0.03

0.1

1

10 100 30020 50 200

A

5 mb

10 mb
15 mb
20 mb

T 
(A

)

σeff = 25 mb

Large effect even if the 
pion radius is changed 

just by 20%

If squeezing is strong  enough can measure quark- antiquark size using
 dipole - nucleon cross section to determine the size of the dipole.

32
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Defrosting point like configurations - energy dependence for fixed s’,t’

Use lcoh~ 0.6 fm Eh[GeV]

Quantum 
Diffusion 
model 

of expansion
⇥PLC(z) =

�
⇥hard +

z

lcoh
[⇥ � ⇥hard]

⇥
�(lcoh � z) + ⇥�(z � lcoh)

which describes well CT for pion electroproduction

c
b

d

c
b

d

0.7

0.8

0.9

1

1.1

20 100 30050 200

p
    
(GeV/c)

R
 =

 T
(p

  ,
x

= 
0.

2)
 /

T(
p 

 ,
x

= 
0.

5) 1

A = 12
40

208

π

π
π

x = p

fin
⇡ /p

in
⇡

x=0.5

33

Change of pinc for fixed pt’s and x’s of 
produced two hadrons  =Lorentz 
boost of hard block without changing 
its internal structure
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A detailed theoretical study of the reactions pp→NNπ,  NΔπ was 
recently  completed. Factorization  based on squeezing

Kumano, Strikman, and Sudoh 09

NP M

P

P P

P

P P

!
qqqqq

NP M

P

P P

P

P P

!
qqqqq

p

π0

pp

NP M

P

P P

P

P P

!
qqqqq

NP M

P

P P

P

P P

!
qqqqq

Δ++

π-

pp

p
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Same cross section for antiproton projectiles!
Large enough cross sections to be measured with modern detectors

Strong dependence of σ on proton transverse polarization (similar to DIS 
case of pion production  Frankfurt, Pobilitsa, Polyakov, MS  ) 35
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