GPDs and TMDs at Electron-Ion Collider

Workshop on hadron tomography at J-PARC and KEKB January 6th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN)

Electron-Ion Collider

1.3-6.6 GeV 7.9-21.2 GeV

- World's first polarized electron + proton / light-ion / heavy-ion collider to be constructed in US
 - QCD frontier machine for nucleon / nuclear structure in quark + gluon picture
 - Extending QCD science at JLab / RHIC
 - Wide range of kinematics
 - Variable center of mass energy $\sqrt{s} = 20 140$ GeV
 - Wide *Q*² range for evolution study
 - Wide *x* range for covering valence to low-*x* physics
 - High beam polarization
 - e, p, d/³He
 - High luminosity
 - 10³³⁻³⁴cm⁻²s⁻¹
 - 100 1000 times HERA
 - Beam species
 - Polarized e, p, d/³He, wide range in nuclei

100 meter

ERL Cryomodule

Electron-Ion Collider

- Physics at EIC
 - 3D structure of the nucleon / nucleus
 - TMDs / GPDs
 - Orbital motion
 - Gluon distribution (radius etc.)
 - Spin puzzle
 - Gluon polarization
 - Orbital angular momentum from GPDs
 - Gluon saturation
 - Hadronization

3D structure of the nucleon

- Bag model
 - Gluon field distribution is wider than the fast moving quarks
 - gluon radius > charged radius
- Constituent quark model
 - Gluons and sea quarks hide inside massive quarks
 - gluon radius ~ charged radius
- Lattice gauge theory (with slow moving quarks)
 - Gluons more concentrated inside the quarks
 - gluon radius < charged radius
- Need measurement of transverse images of the quarks and gluons in the nucleon

DIS

- Inclusive measurement of scattered lepton
- Large $Q^2 (Q^2 = -q^2)$ provides a hard scale to resolve quarks and gluons in the proton
- 1D longitudinal motion of partons
 - Spin and flavor structure of the nucleon
 - e.g. gluon polarization

SIDIS

- Two momentum scales
 - Large Q²: hard scale for spatial resolution
 - Small *p*_T: motion of confined partons
- TMD (Transverse-Momentum Dependent) parton distribution function (PDF)
 - Confined motion of partons inside the nucleon

TMDs

- Correlation between the (orbital) motion and spin of partons, and the spin of the nucleon
 - Transversity: spin of the nucleon and spin of partons
 - Sivers: spin of the nucleon and orbital motion of partons
 - Boer-Mulders: orbital motion and spin of partons

TMDs at EIC

- High precision measurement of all the quark TMDs in the valence region
 - Large Q² to suppress potential higher twist contamination
- First measurement of the TMDs for anti-quarks and gluons
- Studies of QCD evolution properties of TMDs

Accuracy for π^+ production in SIDIS off the proton at EIC 10 fb⁻¹

TMDs at EIC

Sivers function extracted for valence (left) and sea (right) up quarks from (grey) currently available data and (purple) projection at EIC \sqrt{s} = 45 GeV, 10 fb⁻¹

January 6, 2017

Exclusive processes

- Tomography of the nucleon / nucleus
- Spatial imaging of gluons and sea quarks
 - 2D (spatial) + 1D (longitudinal moment) coordinate space image

GPDs

Spatial distribution of sea quarks in unpolarized proton (left) and polarized proton (right) at EIC 100 fb⁻¹ and corresponding density of partons in the transverse plane

January 6, 2017

- Meson production
 - Gluon GPDs from J/ψ production at EIC

GPDs

Gluon GPDs at HERA

VM production and DVCS: t-dependence, b(Q²+M²_{VM})

- dσ/dt ~ e^{-b|t|}
- Data show b decreasing vs Q² + M²_{VM} up to an asymptotic value
- In optical model approach, via Fourier transform, b is related to the size of the interaction region:

 $b \sim (R_{p}^{2} + R_{VM}^{2})/4$

For b~4.5 GeV⁻² → radius of interaction ~ 0.6 fm, smaller than the radius of proton tested in EM interactions to be 0.8 fm

(GeV⁻²) ρ ZEUS 96-00 (120 pb⁻¹) p ZEUS 94 p ZEUS 95 12 h
H
1
96-00
 o H1 96-00 J/w ZEUS 98-00 DVCS ZEUS LPS (31 pb⁻¹ J/w ZEUS 96-97 10 DVCS H1 96-00 J/y H1 99-00 п ① T ZEUS (468 pb⁻¹) DVCS H1 8 6 $\overline{\mathbf{q}}$ 4 2 0 _ 0 20 40 60 80 100 $Q^2 + M_{VM}^2 (GeV^2)$

size of interacting gluons within the protons is smaller than the size of the quarks in the proton and is getting smaller with Q² + M^2_{VM}

Spin puzzle

- Orbital angular momentum
 - Ji's sum rule in GPD

$$J_q^z = \frac{1}{2} \sum_{q} \Delta q + \sum_{q} \mathsf{L}_q^z$$
$$J_q^z = \frac{1}{2} \left(\int_{-1}^{1} x \, dx \left(\mathbf{H}^q + \mathbf{E}^q \right) \right)_{t \to 0}$$

- Gluon polarization
 - DIS at EIC

$$\frac{1}{2} = \left[\frac{1}{2}\Delta\Sigma + L_Q\right] + \left[\Delta g + L_G\right]$$

- $\Delta\Sigma/2$ = Quark contribution to Proton Spin
- L_0 = Quark Orbital Ang. Mom
- Δg = Gluon contribution to Proton Spin

$$L_{G}$$
 = Gluon Orbital Ang. Mom

Gluon saturation

- Gluon density saturated where gluon emission and recombination comparable
 - Color glass condensate (CGC)
 - First observation of a collective gluonic system

Enhancement with nucleus

 Saturation at significantly lower energy in e+A collisions at EIC

Diffractive process

- Gluon saturation
 - Diffraction is the most sensitive way
 - More diffraction if saturation/CGC at EIC e+A

Diffractive process

Hadronization

• Response of nuclear matter to fast moving color charge passing through it

EIC Physics vs luminosity & energy

eRHIC at BNL

- 1.67 GeV main Energy Recovery Linac
- 2 FFAG beamlines used for re-circulations of 11 (12) beam energies
- Individual beamline to transport highest energy electrons

eRHIC at BNL

April 6, 2016

A. Deshpande, EIC & Detector R&D

EIC Detectors & IR

Field-free electron pass thru hadron triplet magnets → minimize Sync Rad

ePHENIX

• ePHENIX as an initial detector at eRHIC

• Feasible scenario for EIC

• sPHENIX (2022-23)

- A new large-acceptance jet and Upsilon detector around the BaBar megnet
- Probe QGP with precision measurements of jet quenching and Upsilon suppression
- forward sPHENIX (fsPHENIX)
 - Possible extension of sPHENIX for transverse spin physics
 - p+A and p⁺+A physics for CNM effects
- ePHENIX (2025 or later)
 - Central arm detector based on sPHENIX
 - Hadron arm detector possibly base on fsPHENIX
 - Electron arm detector

JLEIC at JLab

- Electron 3 10 GeV
- Proton 20 100 GeV
- Ion 12 40 GeV/u
- Collision energy $\sqrt{s} = 15 65$ GeV

JLEIC at JLab

April 6, 2016

A. Deshpande, EIC & Detector R&D

EIC at JLab: Integrated IR & Detector

12

EIC project

- NSAC 2015 Long Range Plan
 - We recommend a highenergy high luminosity polarized Electron Ion Collider as the highest priority for new facility construction after the completion of FRIB.
- CD3 (Start of construction) by 2022/23

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

EIC User Group (EUCUG)

- EIC Users
 - More than 600 collaborators, 26 countries, 101 institutions (March, 2016)
- From Japan
 - Experimentalists
 - RIKEN (Akiba, Goto, Nakagawa, Seidl, Mitsuka)
 - Tokyo Tech. (Shibata, Nakano)
 - Yamagata Univ. (Iwata, Miyachi, Doshita, Horikawa)
 - Theorists
 - Juntendo Univ. (Tanaka)
 - KEK (Kumano)
 - Kyorin Univ. (Ohtani)
 - Kyoto Univ. (Kunihiro, Hatta)
 - Niigata Univ. (Koike)
 - RIKEN (Hatsuda, Doi)
 - Tohoku Univ. (Sasaki)
 - Tokyo Univ. of Science (Saito)

Summary

- Physics at EIC
 - 3D structure of the nucleon / nucleus
 - TMDs / GPDs
 - Confined motion and distribution of partons inside the nucleon
 - Spin puzzle
 - Gluon polarization at low x region
 - Orbital angular momentum from GPDs
 - Gluon saturation
 - Discovery of collective gluonic system
 - Hadronization
- EIC project
 - Recommendation by NSAC 2015 Long Range Plan as the highest priority for new facility construction after FRIB
 - eRHIC at BNL
 - sPHENIX \rightarrow ePHENIX
 - JLEIC at Jefferson Lab
 - Development of EIC User Group