#### ハドロン分子におけるコンパクトな5クォーク 状態が作る近距離引力

#### 山口康宏1

#### in collaboration with

Alessandro Giachino<sup>2</sup>, 保坂淳<sup>3</sup>, Elena Santopinto<sup>2</sup>, 竹内幸子<sup>4</sup>, 瀧澤誠<sup>5</sup>

> <sup>1</sup> 理研, <sup>2</sup>INFN Genova, <sup>3</sup> 阪大 RCNP, <sup>4</sup> 社会事業大, <sup>5</sup> 昭和薬科大

Y.Y, A. Giachino, A. Hosaka, E. Santopinto, S. Takeuchi, M. Takizawa, arXiv:1709.00819 [hep-ph]

KEK 理論センター研究会「ハドロン・原子核物理の理論研究 最前線 2017」

#### Outline

# Hadronic molecules + Compact state

#### Introduction

- Exotic hadron
- Hidden-charm pentaquark
- Odel setup
  - Heavy Quark Spin Symmetry and OPEP
  - Compact 5-quark potential
- Numerical results
  - Hidden-charm molecules
  - Hidden-bottom molecules
- Summary

Hadronic molecule

 $ar{c}$ 

Pentaguark

(Compact)

 $\boldsymbol{Q}$ 

 $\boldsymbol{q}$ 

# **Conventional and Exotic hadrons**

Introduction: Exotic hadron

- Hadron: Composite particle of Quarks and Gluons
- Constituent quark model (Baryon(qqq) and Meson  $q\bar{q}$ ) has been successfully applied to the hadron spectra!



# **Conventional and Exotic hadrons**

Introduction: Exotic hadron

- Hadron: Composite particle of Quarks and Gluons
- Constituent quark model (Baryon(qqq) and Meson  $q\bar{q}$ ) has been successfully applied to the hadron spectra!



# Observation of two hidden-charm pentaquarks !!

#### Introduction: pentaquark



•  $P_{\rm c}(4380)$  and  $P_{\rm c}(4450)$  obtained near  $\bar{D}\Sigma_{\rm c}^*$  and  $\bar{D}^*\Sigma_{\rm c}$ 

- 4 同 2 4 日 2 4 日 2

# Observation of two hidden-charm pentaquarks !!

#### Introduction: pentaquark



- $P_{\rm c}(4380)$  and  $P_{\rm c}(4450)$  obtained near  $\bar{D}\Sigma_{\rm c}^*$  and  $\bar{D}^*\Sigma_{\rm c}$
- Possible existence of Exotic baryons in the hidden-charm (hidden-bottom) sector?

21 Nov. 2017

### Theoretical discussions of the hidden-charm baryons

#### Introduction: pentaquark

. . .

. . .

#### Proposals of various structures!

H.X.Chen, et al., Phys.Rept.639(2016)1, A.Esposito, et al., Phys.Rept.668(2016)1, A.Ali, et al., PPNP97(2017)123

#### Compact pentaquark (cc̄qqq)?

S.G.Yuan, et al. (2012), L.Maiani, et al, (2015),

S.Takeuchi, et al, (2017), J. Wu, et al. (2017),

#### • Hadronic molecule $(\bar{D}\Sigma_{c}^{*}, \bar{D}^{*}\Sigma_{c},...)$ ?

J.-J.Wu *et al.*, (2010) (2011), C. Garcia-Recio, *et al.* (2013), R. Chen, *et al.* (2015), Y.Shimizu, *et al.* (2016) (2017),

#### Kinematical effect? Cusp? (Non-resonant explanation)

F.K.Guo, et al. (2015), X.H.Liu, et al. (2016),



Pentaquark (Compact)





< □ > < □ >

#### Exotic states near thresholds $\rightarrow$ Molecules?

Introduction: pentaquark

▷ e.g.  $P_c(4380)$ ,  $P_c(4450)$ → close to the meson-baryon thresholds



< 🗇 > <

∃ ► < ∃ ►</p>

э

#### Exotic states near thresholds $\rightarrow$ Molecules?

Introduction: pentaquark

▷ e.g.  $P_c(4380)$ ,  $P_c(4450)$ → close to the meson-baryon thresholds



- Exotic state may be a loosely bound state of the meson-baryon.
  - $\Rightarrow$  Analogous to atomic nuclei (Deuteron:  $B \sim 2.2 \text{ MeV}$ )

21 Nov. 2017

# Compact state: 5-quark configuration

Introduction: pentaquark

- S. Takeuchi and M. Takizawa, PLB**764** (2017) 254-259.
  - $P_c$  states by the quark cluster model
- 5-quark configurations



Image: A image: A

# Compact state: 5-quark configuration

Introduction: pentaquark

- S. Takeuchi and M. Takizawa, PLB**764** (2017) 254-259.
  - $P_c$  states by the quark cluster model
- 5-quark configurations



•  $[q^3 8_c 3/2]$ : Color magnetic int. is attractive!

- 4 同 6 4 日 6 4 日 6

# Compact state: 5-quark configuration

Introduction: pentaquark

- S. Takeuchi and M. Takizawa, PLB764 (2017) 254-259.
  - $P_c$  states by the quark cluster model
- 5-quark configurations



- $[q^3 8_c 3/2]$ : Color magnetic int. is attractive!
  - $\Rightarrow$  Couplings to (qqc) baryon- $(q\bar{c})$  meson, e.g.  $\bar{D}\Sigma_c$ , are allowed!

Compact state ⇔ Hadronic Molecule

21 Nov. 2017

• Hadronic molecule (*MB*) + Compact state (5*q*)

▲□ → ▲ 田 → ▲ 田 →

э

Hadronic molecule (MB) + Compact state (5q)
 ⇒ MB coupled to 5q (Feshbach Projection)

(4 同) (4 日) (4 日)

Hadronic molecule (MB) + Compact state (5q)
 ⇒ MB coupled to 5q (Feshbach Projection)



Long range interaction: One pion exchange potential (OPEP)
 Short range interaction: 5q potential

Hadronic molecule (MB) + Compact state (5q)
 ⇒ MB coupled to 5q (Feshbach Projection)



Long range interaction: One pion exchange potential (OPEP)

Short range interaction: 5q potential (→Local Gaussian) (\* Other int. (double counting...) → Future work)

*MB* bound states: Role of the 5*q* potential

#### 1. Long range force: One pion exchange potential



(4月) (4日) (4日)

#### Heavy quark symmetry and OPEP HQS and OPEP

# (Heavy Quark Spin Symmetry)

# (Heavy Quark Spin Symmetry)

#### Charm (c), Bottom (b), Top (t)

< ロ > < 同 > < 回 > < 回 > .



Charm (c), Bottom (b), Top (t)

# Coupled channels of MB Tensor force (OPEP)

- 4 同 6 4 日 6 4 日 6

# Heavy Quark Spin Symmetry and Mass degeneracy HQS and OPEP

Heavy Quark Spin Symmetry (HQS) N.Isgur, M.B.Wise, PLB232(1989)113

- Suppression of Spin-spin force in  $m_Q \to \infty$ .
  - $\Rightarrow$  Mass degeneracy of hadrons with the different J
- e.g. Qq
   meson



• Charm sector:  $\bar{D}(0^-) - \bar{D}^*(1^-)$ ,  $\Sigma_{\rm c}(1/2^+) - \Sigma_{\rm c}^*(3/2^+)$ 

#### Mass degeneracy $\rightarrow \bar{D} - \bar{D}^*$ , $\Sigma_{\rm c} - \Sigma_{\rm c}^*$ mixing! HQS and OPEP

•  $\bar{D}-\bar{D}^{*}$  and  $\Sigma_{\rm c}-\Sigma_{\rm c}^{*}$  mixing in the  $\bar{D}Y_{\rm c}$  system



• Coupled channels of  $\bar{D}\Sigma_{\rm c}$ ,  $\bar{D}\Sigma_{\rm c}^*$ ,  $\bar{D}^*\Sigma_{\rm c}$  and  $\bar{D}^*\Sigma_{\rm c}^*$ !

(4月) (4日) (4日)

#### Mass degeneracy $\rightarrow \bar{D} - \bar{D}^*$ , $\Sigma_{\rm c} - \Sigma_{\rm c}^*$ mixing! HQS and OPEP

•  $\bar{D}-\bar{D}^{*}$  and  $\Sigma_{\rm c}-\Sigma_{\rm c}^{*}$  mixing in the  $\bar{D}\,Y_{\rm c}$  system



- Coupled channels of  $\bar{D}\Sigma_{\rm c}$ ,  $\bar{D}\Sigma_{\rm c}^*$ ,  $\bar{D}^*\Sigma_{\rm c}$  and  $\bar{D}^*\Sigma_{\rm c}^*$ !
- In addition,  $\Lambda_c$  (*cqq*):  $\overline{D}^{(*)}\Lambda_c$  channel!?

#### Mass degeneracy $\rightarrow \bar{D} - \bar{D}^*$ , $\Sigma_{\rm c} - \Sigma_{\rm c}^*$ mixing! HQS and OPEP

•  $\bar{D}-\bar{D}^{*}$  and  $\Sigma_{\rm c}-\Sigma_{\rm c}^{*}$  mixing in the  $\bar{D}\,Y_{\rm c}$  system



6 meson-baryon components

(1) 
$$\bar{D}\Lambda_{c}$$
, (2)  $\bar{D}^{*}\Lambda_{c}$ , (3)  $\bar{D}\Sigma_{c}$ , (4)  $\bar{D}\Sigma_{c}^{*}$ ,  
(5)  $\bar{D}^{*}\Sigma_{c}$ , (6)  $\bar{D}^{*}\Sigma_{c}^{*}$ 

# Mass degeneracy $ightarrow ar{D} - ar{D}^*$ , $\Sigma_{ m c} - \Sigma_{ m c}^*$ mixing! HQS and OPEP

•  $\bar{D}-\bar{D}^{*}$  and  $\Sigma_{\rm c}-\Sigma_{\rm c}^{*}$  mixing in the  $\bar{D}Y_{\rm c}$  system



6 meson-baryon components

(1) 
$$\overline{D}\Lambda_{c}$$
, (2)  $\overline{D}^{*}\Lambda_{c}$ , (3)  $\overline{D}\Sigma_{c}$ , (4)  $\overline{D}\Sigma_{c}^{*}$ ,  
(5)  $\overline{D}^{*}\Sigma_{c}$ , (6)  $\overline{D}^{*}\Sigma_{c}^{*} \rightarrow \text{Coupled by OPEP!}$ 

# Heavy hadron- $\pi$ coupling HQS and OPEP

• Effective Lagrangians: Heavy hadron and  $\pi$ 

R. Casalbuoni *et al.*, Phys.Rept.**281** (1997)145, T. M. Yan, *et al.*, PRD**46**(1992)1148 Y.-R.Liu and M.Oka, PRD**85**(2012)014015



▷ Heavy meson:  $\overline{D}^{(*)}\overline{D}^{(*)}\pi$  (*DD* $\pi$ : Parity violation)

$$\mathcal{L}_{\pi HH} = -\frac{g_{\pi}}{2f_{\pi}} \text{Tr} \left[ H \gamma_{\mu} \gamma_{5} \partial^{\mu} \hat{\pi} \bar{H} \right], \quad H = \frac{1 + \not}{2} \left[ D_{\mu}^{*} \gamma^{\mu} - D \gamma_{5} \right]$$

(人間) (人) (人) (人) (人) (人) (人)

# Heavy hadron- $\pi$ coupling HQS and OPEP

• Effective Lagrangians: Heavy hadron and  $\pi$ 

R. Casalbuoni et al., Phys.Rept.281 (1997)145, T. M. Yan, et al., PRD46(1992)1148

Y.-R.Liu and M.Oka, PRD85(2012)014015



▷ Heavy meson:  $\overline{D}^{(*)}\overline{D}^{(*)}\pi$  (*DD* $\pi$ : Parity violation)

 $\mathcal{L}_{\pi HH} = -\frac{\mathbf{g}_{\pi}}{2f_{\pi}} \text{Tr} \left[ H \gamma_{\mu} \gamma_{5} \partial^{\mu} \hat{\pi} \bar{H} \right], \quad \mathbf{H} = \frac{\mathbf{1} + \mathbf{y}}{2} \left[ \mathbf{D}_{\mu}^{*} \gamma^{\mu} - \mathbf{D} \gamma_{5} \right]$ 

# Heavy hadron- $\pi$ coupling HQS and OPEP

• Effective Lagrangians: Heavy hadron and  $\pi$ 

R. Casalbuoni *et al.*, Phys.Rept.**281** (1997)145, T. M. Yan, *et al.*, PRD**46**(1992)1148 Y.-R.Liu and M.Oka, PRD**85**(2012)014015



# $\bar{D}^{(*)}Y_c$ Interaction: Long range force HQS and OPEP

• One pion exchange potential

• Form factor with Cutoff  $\Lambda$  (determined by the hadron size)

$$F(q^2)=rac{\Lambda^2-m_\pi^2}{\Lambda^2-q^2}, \hspace{1em} \Lambda_{ar{D}}\sim 1130 \hspace{1em} ext{MeV}, \Lambda_{Y_{ ext{c}}}\sim 840 \hspace{1em} ext{MeV}$$

Y.Y, A. Giachino, A. Hosaka, E. Santopinto, S. Takeuchi, M. Takizawa, arXiv:1709.00819 [hep-ph]

ъ

# $\bar{D}^{(*)}Y_c$ Interaction: Long range force HQS and OPEP

• One pion exchange potential with Tensor force!



Form factor with Cutoff Λ (determined by the hadron size)

$$F(q^2)=rac{\Lambda^2-m_\pi^2}{\Lambda^2-q^2}, \hspace{1em} \Lambda_{ar{D}}\sim 1130 \hspace{1em} ext{MeV}, \Lambda_{Y_c}\sim 840 \hspace{1em} ext{MeV}$$

Y.Y, A. Giachino, A. Hosaka, E. Santopinto, S. Takeuchi, M. Takizawa, arXiv:1709.00819 [hep-ph]

#### 2. Short range force: 5-quark potential



- 4 回 > - 4 回 > - 4 回 >

• 5-quark potential  $\Rightarrow$  s-channel diagram...But



 $\exists \rightarrow$ 

▲ □ ▶ ▲ □ ▶ ▲

- 5-quark potential  $\Rightarrow$  Local Gaussian potential is employed.
- Massive  $M_{5q}$  (few hundred MeV above  $\bar{D}^*\Sigma^*_{
  m c}) 
  ightarrow {f Attractive}$



- 5-quark potential  $\Rightarrow$  Local Gaussian potential is employed.
- Massive  $M_{5q}$  (few hundred MeV above  $\bar{D}^*\Sigma_c^*$ )  $\rightarrow$  Attractive



#### **Free Parameters**

Strength f and Gaussian para.  $\alpha$  ( $\rightarrow$  may be fixed in the future) (f vs E will be shown latter.  $\alpha = 1 \text{ fm}^{-2}$  is fixed.)

(人間) (人) (人) (人) (人) (人) (人)

- 5-quark potential  $\Rightarrow$  **Local Gaussian potential** is employed.
- Massive  $M_{5q}$  (few hundred MeV above  $\bar{D}^*\Sigma_c^*$ )  $\rightarrow$  **Attractive**



#### **Free Parameters**

Strength f and Gaussian para.  $\alpha$  ( $\rightarrow$  may be fixed in the future) (f vs E will be shown latter.  $\alpha = 1 \text{ fm}^{-2}$  is fixed.)

#### Relative strength $S_i$

Spectroscopic factors  $\Rightarrow$  determined by the spin structure of 5q

# Spectroscopic factors S<sub>i</sub> 5q potential

- S-factor is determined by the spin structure of the 5q state
- Several 5*q* states with  $S_{3q}$  and  $S_{c\bar{c}}$  configuration e.g. for  $J^P = 1/2^-$ , (i), (ii), (iii)



Image: A image: A

# Spectroscopic factors S<sub>i</sub> 5q potential

- S-factor is determined by the spin structure of the 5q state
- Several 5*q* states with  $S_{3q}$  and  $S_{c\bar{c}}$  configuration e.g. for  $J^P = 1/2^-$ , (i), (ii), (iii)



• **Overlap** of the spin wavefunctions of 5-quark state and  $\bar{D}Y_{\rm c}$ 

$$S_i = \left\langle (\bar{D}Y_{\mathrm{c}})_i \, \big| \, 5q \right\rangle$$

 $\Rightarrow$  Relative strength of couplings to  $\bar{D}Y_{c}$  channel

#### Spectroscopic factor S<sub>i</sub> 5q potential

• 5q-configuration:  $8_c qqq$  and  $8_c c\bar{c}$  with S-wave  $V_{ij}^{5q}(r) = -f \mathbf{S_i S_j} e^{-\alpha r^2}$ 

Table: Spectroscopic factors  $S_i$  for each meson-baryon channel.

| J   |       | $S_{c\bar{c}}$ | $S_{3q}$ | $ar{D} \Lambda_{ m c}$ | $ar{D}^* \Lambda_{ m c}$ | $ar{D}\Sigma_{ m c}$ | $ar{D}\Sigma_{ m c}^*$ | $ar{D}^*\Sigma_{ m c}$ | $ar{D}^*\Sigma^*_{ m c}$ |
|-----|-------|----------------|----------|------------------------|--------------------------|----------------------|------------------------|------------------------|--------------------------|
| 1/2 | (i)   | 0              | 1/2      | 0.4                    | 0.6                      | -0.4                 | _                      | 0.2                    | -0.6                     |
|     | (ii)  | 1              | 1/2      | 0.6                    | -0.4                     | 0.2                  |                        | -0.6                   | -0.3                     |
|     | (iii) | 1              | 3/2      | 0.0                    | 0.0                      | -0.8                 | —                      | -0.5                   | 0.3                      |
| 3/2 | (i)   | 0              | 3/2      |                        | 0.0                      |                      | -0.5                   | 0.6                    | -0.7                     |
|     | (ii)  | 1              | 1/2      |                        | 0.7                      |                      | 0.4                    | -0.2                   | -0.5                     |
|     | (iii) | 1              | 3/2      | —                      | 0.0                      | _                    | -0.7                   | -0.8                   | -0.2                     |
| 5/2 | (i)   | 1              | 3/2      |                        |                          |                      |                        |                        | -1.0                     |

#### Spectroscopic factor S<sub>i</sub> 5q potential

• 5q-configuration:  $8_c qqq$  and  $8_c c\bar{c}$  with S-wave  $V_{ij}^{5q}(r) = -f \mathbf{S_i S_j} e^{-\alpha r^2}$ 

Table: Spectroscopic factors  $S_i$  for each meson-baryon channel.

| J   |       | $S_{c\bar{c}}$ | $S_{3q}$ | $ar{D} \Lambda_{ m c}$ | $ar{D}^* \Lambda_{ m c}$ | $ar{D}\Sigma_{ m c}$ | $ar{D}\Sigma_{ m c}^*$ | $ar{D}^*\Sigma_{ m c}$ | $ar{D}^*\Sigma^*_{ m c}$ |
|-----|-------|----------------|----------|------------------------|--------------------------|----------------------|------------------------|------------------------|--------------------------|
| 1/2 | (i)   | 0              | 1/2      | 0.4                    | 0.6                      | -0.4                 |                        | 0.2                    | <b>-0.6</b>              |
|     | (ii)  | 1              | 1/2      | 0.6                    | -0.4                     | 0.2                  | —                      | <b>-0.6</b>            | -0.3                     |
|     | (iii) | 1              | 3/2      | 0.0                    | 0.0                      | <b>-0.8</b>          | —                      | -0.5                   | 0.3                      |
| 3/2 | (i)   | 0              | 3/2      |                        | 0.0                      | _                    | -0.5                   | 0.6                    | -0.7                     |
|     | (ii)  | 1              | 1/2      |                        | 0.7                      | —                    | 0.4                    | -0.2                   | -0.5                     |
|     | (iii) | 1              | 3/2      | —                      | 0.0                      | —                    | <b>-0.7</b>            | <b>-0.8</b>            | -0.2                     |
| 5/2 | (i)   | 1              | 3/2      |                        |                          |                      |                        |                        | -1.0                     |

• Large S<sub>i</sub> will play an important role.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

### Numerical Results for Hidden-charm sector



#### Bound state and Resonance

- Coupled-channel Schrödinger equation for  $\bar{D}\Lambda_c$ ,  $\bar{D}^*\Lambda_c$ ,  $\bar{D}\Sigma_c$ ,  $\bar{D}\Sigma_c^*$ ,  $\bar{D}^*\Sigma_c$ ,  $\bar{D}^*\Sigma_c^*$  (6 *MB* components).
- For  $J^P = 1/2^-$ ,  $3/2^-$ ,  $5/2^-$  (Negative parity)

### Results ( $f^{5q}$ vs E) of charm $\overline{D}Y_c$ for $J^P = 1/2^-$

• OPEP +  $V^{5q}$  (i), (ii), (iii)



- No state in small f<sup>5q</sup>
- → OPEP is not enough to produce states
- ⇒ States appear near the threshold

### Results ( $f^{5q}$ vs E) of charm $\overline{D}Y_c$ for $J^P = 1/2^-$

• OPEP +  $V^{5q}$  (i), (ii), (iii)





- No state in small f<sup>5q</sup>
- → OPEP is not enough to produce states
- ⇒ States appear near the threshold

### Results ( $f^{5q}$ vs E) of charm $\overline{D}Y_c$ for $J^P = 1/2^-$

• OPEP +  $V^{5q}$  (i), (ii), (iii)





- No state in small f<sup>5q</sup>
- → OPEP is not enough to produce states
- ⇒ States appear near the threshold
  ⇔ Large S-factor

### Results ( $f^{5q}$ vs E) of charm $\overline{D}Y_c$ for $J^P = 3/2^-$

• OPEP +  $V^{5q}$  (i), (ii), (iii)





- No state in small  $f^{5q}$
- ⇒ States appear near the thresholds

### Results ( $f^{5q}$ vs E) of charm $\overline{D}Y_c$ for $J^P = 3/2^-$

• OPEP +  $V^{5q}$  (i), (ii), (iii)





- No state in small  $f^{5q}$
- ⇒ States appear near the thresholds
   ⇔ Large S-factor

### Results ( $f^{5q}$ vs E) of charm $\overline{D}Y_c$ for $J^P = 3/2^-$

• OPEP +  $V^{5q}$  (i), (ii), (iii)





- No state in small f<sup>5q</sup>
- $\Rightarrow$  States appear near the thresholds
  - ⇔ Large S-factor
  - $P_c(4380)$ ? (below  $\bar{D}\Sigma_c^*$ )  $P_c(4450)$ ? (below  $\bar{D}^*\Sigma_c$ )

### Results ( $f^{5q}$ vs E) of charm $\overline{D}Y_c$ for $J^P = 5/2^-$





## Results ( $f^{5q}$ vs E) of charm $\overline{D}Y_c$ for $J^P = 5/2^-$

• Charm  $\overline{D}Y_c$  for  $J^P = 5/2^-$ , One 5q state



#### Summary of the hidden-charm sector

- OPEP is not strong enough to produce a state.
- The importance of the 5q potential
  - $\Rightarrow$  States below the *MB* thresholds  $\leftarrow$  **large** *S*-factor

#### Volume integrals of the potentials

Bound and Resonant states appears for *f<sup>5q</sup>* ≥ 25
 ⇔ Large? Small?

#### Volume integrals of the potentials

- Bound and Resonant states appears for *f*<sup>5q</sup> ≥ 25
   ⇔ Large? Small?
- ▷ Volume integral  $V(q = 0) = \int V(r)dr^3$ Comparison with the *NN* interaction (Bonn potential) R. Machleidt, K. Holinde and C. Elster, Phys. Rept. **149**, 1 (1987).

$$ig| V_{f=25}^{5q}(0) ig| = 1.1 imes 10^{-4} \text{ MeV} \sim 0.03 |C_{NN}^{\sigma}(0)|$$
  
 $(C_{NN}^{\sigma}: ext{Central force of } \sigma ext{ exchange})$ 

•  $\left|V_{f=25}^{5q}(0)\right|$  is much smaller than  $|C_{NN}^{\sigma}(0)|$ . However, the bound and resonant states are obtained!

### Results ( $f^{5q}$ vs E) of bottom $BY_b$ for $J^P = 1/2^-$

• OPEP +  $V^{5q}$  (i), (ii), (iii)





- OPEP produces the states!
- Importance of OPEP
  - $B B^*$ ,  $\Sigma_{\rm b} \Sigma_{\rm b}^*$  mixing
- Many states close to the thresholds

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### Summary



- Introducing 6 meson-baryon components: Multiplet of the HQS,  $\bar{D}\Sigma_{c}, \bar{D}\Sigma_{c}^{*}, \bar{D}^{*}\Sigma_{c}, \bar{D}^{*}\Sigma_{c}^{*} + \bar{D}\Lambda_{c}, \bar{D}^{*}\Lambda_{c}$
- Interaction: OPEP as a long range int., and the compact 5-quark potential as a short range int.
- By solving the coupled-channel Schrödinger equation for  $\overline{D}Y_c$ , the bound and resonant states are studied.
- For the hidden-charm, the OPEP is not enough to produce the states. Importance of the 5*q* potential.
- For the bottom sector, the OPEP is enhanced because of the mixing effect. OPEP + 5q potential produces many states.
   21 Nov. 2017 山口康宏 (理研) KEK 理論センター研究会

### Summary



- Future Works
  - ▶ Treatment of the 5*q* potential
  - **1.** Determining the strength  $f^{5q}$  (Quark model?)
  - 2. Energy dependent 5q potential
  - **3.** Including the  $J/\psi N$  channel
  - Other short range interaction (double counting)
  - Y. Yamaguchi, A. Giachino, A. Hosaka, E. Santopinto, S. Takeuchi, M. Takizawa, arXiv:1709.00819 [hep-ph]

#### Thank you for your kind attention.

21 Nov. 2017

- 4 同 6 4 日 6 4 日 6

#### Back up

æ

#### Form factor

 To take into account the hadron structure, the form factor is introduced.



 Form factor with the cutoffs Λ<sub>D</sub>, Λ<sub>Y<sub>c</sub></sub>
 → Fixed by the hadron size ratio, Λ<sub>D</sub> = 1.35Λ<sub>N</sub>, Λ<sub>Y<sub>c</sub></sub> ~ Λ<sub>N</sub>

$$F(\Lambda, \vec{q}\,) = rac{\Lambda^2 - m_\pi^2}{\Lambda^2 + |\vec{q}\,|^2}, \quad rac{r}{r_N} = rac{\Lambda_N}{\Lambda}, \Lambda_N = 837 \,\, \mathrm{MeV}.$$

S.Yasui,K.Sudoh,PRD80 (2009) 034008, Y.Yamaguchi,et al. PRD84(2011)014032

• Hidden-charm:  $V^{5q} = V_{(i)}^{5q} + V_{(ii)}^{5q} + V_{(iii)}^{5q}$ 



• Hidden-bottom:  $V^{5q} = V_{(i)}^{5q} + V_{(ii)}^{5q} + V_{(iii)}^{5q}$ 



21 Nov. 2017

• 
$$V_{ij}^{5q}(r) = -\mathbf{f_0}S_iS_je^{-\alpha r^2}$$
  
 $\Rightarrow$  Parameters:  $\alpha = 1 \text{ fm}^{-2}$  (Assumption),

<ロ> <部> < 部> < き> < き> < き</p>

• 
$$V_{ij}^{5q}(r) = -\mathbf{f_0} S_i S_j e^{-\alpha r^2}$$
  
 $\Rightarrow$  Parameters:  $\alpha = 1 \text{ fm}^{-2}$  (Assumption),  
 $f_0 = V_{\pi}^{\bar{D}^* \Sigma_c}(r=0) \sim 6 \text{ MeV.}$  (reference value)



• 
$$V_{ij}^{5q}(r) = -\mathbf{f_0} S_i S_j e^{-\alpha r^2}$$
  
 $\Rightarrow$  Parameters:  $\alpha = 1 \text{ fm}^{-2}$  (Assumption),  
 $f_0 = V_{\pi}^{\bar{D}^* \Sigma_c}(r=0) \sim 6 \text{ MeV.}$  (reference value)



• 
$$V_{ij}^{5q}(r) = -\mathbf{f_0} S_i S_j e^{-\alpha r^2}$$
  
 $\Rightarrow$  Parameters:  $\alpha = 1 \text{ fm}^{-2}$  (Assumption),  
 $f_0 = V_{\pi}^{\bar{D}^* \Sigma_c}(r=0) \sim 6 \text{ MeV.}$  (reference value)

Volume integral  $\mathcal{V}(q=0) = \int dr^3 V(r)$ 

$$\left|\mathcal{V}^{5q}(0)
ight|\simrac{1}{4}\left|\mathcal{V}^{ar{D}^{*}\Sigma_{ ext{c}}}_{\pi}(0)
ight|$$

▲ 同 ▶ → 三 ▶

э

• 
$$V_{ij}^{5q}(r) = -\mathbf{f_0} S_i S_j e^{-\alpha r^2}$$
  
 $\Rightarrow$  Parameters:  $\alpha = 1 \text{ fm}^{-2}$  (Assumption),  
 $f_0 = V_{\pi}^{\bar{D}^* \Sigma_c}(r=0) \sim 6 \text{ MeV.}$  (reference value)

Volume integral  $\mathcal{V}(q=0) = \int dr^3 V(r)$ 

$$ig|\mathcal{V}^{5q}(0)ig|\sim rac{1}{4}ig|\mathcal{V}^{ar{D}^*\Sigma_{ ext{c}}}_{\pi}(0)ig|\sim rac{1}{15}ig|\mathcal{V}^{ extsf{NN}}_{\pi}(0)ig|\sim rac{1}{880}ig|\mathcal{V}^{ extsf{NN}}_{\sigma}(0)ig|$$

 $(\mathcal{V}_{\pi}^{NN}:$  Central force of OPEP in NN,  $\mathcal{V}_{\sigma}^{NN}(0): \sigma$  exchange in NN)

< 1 →

• 
$$V_{ij}^{5q}(r) = -\mathbf{f_0} S_i S_j e^{-\alpha r^2}$$
  
 $\Rightarrow$  Parameters:  $\alpha = 1 \text{ fm}^{-2}$  (Assumption),  
 $f_0 = V_{\pi}^{\bar{D}^* \Sigma_c}(r=0) \sim 6 \text{ MeV.}$  (reference value)

Volume integral  $\mathcal{V}(q=0) = \int dr^3 V(r)$ 

$$\left|\mathcal{V}^{5q}(0)
ight|\simrac{1}{4}\left|\mathcal{V}^{ar{D}^{*}\Sigma_{ ext{c}}}_{\pi}(0)
ight|\simrac{1}{15}\left|\mathcal{V}^{ extsf{NN}}_{\pi}(0)
ight|\simrac{1}{880}\left|\mathcal{V}^{ extsf{NN}}_{\sigma}(0)
ight|$$

 $(\mathcal{V}_{\pi}^{NN}:$  Central force of OPEP in NN,  $\mathcal{V}_{\sigma}^{NN}(0): \sigma$  exchange in NN)

#### $\Rightarrow$ Small contribution of $V^{5q}$ ...

We will see the f dependence of the energy spectrum ( $f_0$ : reference value )