A theoretical analysis of a hybrid meson

T．Miyamoto \＆S．Yasui

Tokyo Institute of Technology

ハドロン・原子核物理の理論研究最前線 2017 Session 5

KEK，Tsukuba
20－22 November 2017

2003 X(3872) observed at Belle
2004
2005 X(3915) at Belle - Y(4260) at BaBar
2006
2007 X(3940), $\mathrm{Y}(4008), \mathrm{Y}(4660)$ at Belle -
2008 Z+-(4050), X(4160), Z+-(4250), Z+-(4430), X(4630) at Belle
2009 Y (4140) at CDF
$2010 \mathrm{X}(3915), \mathrm{X}(4350), \mathrm{Yb}(10888)$ at Belle
2011 Y (4274) at CDF
$2012 \mathrm{Zb}+-(10610)$ and $\mathrm{Zb}+-(10650)$ at Belle
2013 X(3823) \& Zb 0 (10610) at Belle $-\mathrm{Zc}+-(3900) \& \mathrm{Zc}+-(4020)$ at BESIII
2014 Zc0(4020) at BESIII - Z+-(4200) at Belle - Z+-(4240) at LHCb
2015 Zc+-(4055) at Belle - Y(4230) at BESIII

Outline

\# a brief introduction of $\mathrm{Y}(4260)$

* Y(4260) \& its interpretation
* the selection rules
\# our approach
* hyperspherical formalism
* auxiliary field technique
\# the numerical results we obtained
\# summary

$Y(4260)$

$$
e^{+} e^{-} \rightarrow \gamma \pi^{+} \pi^{-} J / \psi
$$

Discovered by the BaBar group through initial state radiation (ISR) events

Another evidence provided by the Cleo collaboration

Width ~ 90 MeV

Relativistic single resonance Breit-Wigner fit
The measured dipion mass distribution agreed with the theoretical Monte Carlo S-wave phase space model
B. Aubert et al, Phys. Rev. Lett 95142001 (2005)
Q. He et al, Phys. Rev. D 74091104 (2006)
J. Beringer et al, Phys. Rev. D 86010001 (2012)

$$
\mathrm{J}^{\mathrm{PC}}=1^{--}
$$

The 2013 measurement:

$$
\begin{array}{r}
M(Y 4260)=4258.6 \pm 8.3 \pm 12.1 \\
\Gamma_{\mathrm{tot}}=134.1 \pm 16.4 \pm 5.5
\end{array}
$$

The 2016 measurement: (K. Olive et al)

$$
\begin{aligned}
M(Y 4260) & =4251 \pm 9 \\
\Gamma & =120 \pm 12
\end{aligned}
$$

A lattice calculation with a pion mass of about 400 MeV suggests there exists $\mathrm{J}^{\wedge}\{\mathrm{PC}\}=1--$ around 4280 MeV
L. Liu et al, Journal of High Energy Physics, 122 (2012)

Access to this journal is limited ARXIV: https://arxiv.org/pdf/1204.5425.pdf
Decays into $\quad J / \psi+\pi^{-} \pi^{+}$

$$
\begin{aligned}
& J / \psi+\pi^{0} \pi^{0} \\
& J / \psi+K^{-} K^{+}
\end{aligned}
$$

$\mathrm{Z}(3900) \quad M(Z 3900)=3894.5 \pm 6.6 \pm 4.5$

$$
\Gamma=63 \pm 24 \pm 26 \quad \mathrm{MeV} / \mathrm{c}^{2}
$$

Z.Q. Liu et al, Phys. Rev. Lett. 110, 252002 (2013)

THE CHARMONIUM SYSTEM

Mass (MeV)

$$
\begin{array}{llllll}
J^{P C}= & 0^{-+} & 1^{--} & 1^{+-} & 0^{++} & 1^{++}
\end{array} 2^{++}
$$

$Y(4260)$

Tetraquark cc̄ss̄ interpretation needs the channel of $D_{s}+\bar{D}_{s}$
$D D_{1}$ molecule interpretation Y4260 close to $D D_{1}$

$$
\mathrm{e}^{-} e^{+} \rightarrow\left\{\begin{array}{l}
\pi^{+} \pi^{-} J / \psi \\
\pi^{+} \pi^{-} h_{c} \\
\omega \chi_{c 0}
\end{array}\right.
$$

The single-resonance assumption is naïve to determine the mass \& the width of $Y(4260)$. \rightarrow Average the mass and width determinations in the 3 channels - Y4260 label "retired"
(Olsen 2017)
$D \bar{D}_{1}$ B.E. soars to 66 MeV
Hybrid meson
$H_{B}: c \bar{c}+\mathrm{P}$-wave gluon
Selection rule to restrict the decay of the hybrid
(The decay into two S-wave open charm mesons is prohibited)
Gui-Jun Ding, Phys. Rev. D79, 014001 (2009)
E. Kou \& O Pene, Phys. Lett. B 631 (2005) 164

Cross section measurements

$M_{1}=4218 \pm 4 \mathrm{MeV} \quad \Gamma_{1}=66 \pm 9 \mathrm{MeV}$
$M_{2}=4392 \pm 6 \mathrm{MeV} \quad \Gamma_{2}=140 \pm 16 \mathrm{MeV}$
Y(4360) parameters inconsistent

Simplest interpretation: The first peak $\leftarrow \mathrm{Y}(4260)$
The second $\leftarrow \mathrm{Y}(4360)$

$$
\begin{array}{ll}
M_{1}=4222 \pm 4 \mathrm{MeV} & \Gamma_{1}=44 \pm 5 \mathrm{MeV} \\
M_{2}=4320 \pm 13 \mathrm{MeV} & \Gamma_{2}=101_{-22}^{+27} \mathrm{MeV}
\end{array}
$$

A bound system which consists of a quark, antiquark and gluon
Quarks heavy and slow
NR
$\mathcal{O}\left(m_{q}^{-1}\right)$
Interaction between a quark and gluon is an attractive linear potential

Quark-antiquark interaction weak \& repulsive If it is exotic (Beringer 2012), then

$$
J^{\mathrm{PC}}=0^{ \pm-}, 1^{-+}, 2^{+-}, \ldots
$$

Gluon carries the adjoint representation 8 of $\mathrm{SU}(3)$ - it can be linked to a quark \& antiquark to form a colour singlet object.

$=~ \boxplus \oplus \oplus \square \square$
$3 \otimes \overline{3} \otimes 8=27 \oplus 10 \oplus \overline{10} \oplus 8 \oplus 8 \oplus 8 \oplus 1$
$\oplus \square \oplus \square \oplus \square \oplus 日$
D. Horn \& J. Mandula, Phys. Rev. D 17 (1978) 898

Hybrid meson

Hybrid charmonium as a bound state of cc plus a gluon

For a magnetic (transverse electric) gluon:

$$
L_{g}=J_{g}
$$

$$
P=(-1)^{\left(L_{q \bar{q}}+J_{g}\right)}, \quad C=(-1)^{L_{q \bar{q}}+S_{q \bar{q}}+1}
$$

The lowest state is: $L_{q \bar{q}}=0, \quad J^{P C}=1^{--}$

For an electric (transverse magnetic) gluon:

$$
L_{g}=J_{g} \pm 1
$$

$$
P=(-1)^{\left(L_{q \bar{q}}+J_{g}+1\right)}, \quad C=(-1)^{L_{q \bar{q}}+S_{q \bar{q}}+1}
$$

A. Le Yaouanc et al, Z. Phys. C - Particle \& Physics 28, 309 (1985)

Note:
Cf: electric,magnetic photon (radiation) carries parity of: $(-1)^{l},(-1)^{l+1}$

The parity of a meson is:

$$
P=(-1)^{L+1}
$$

Table 1: A hybrid meson's states which are allowed to exist.
States which are allowed to exist for a hybrid meson $q \bar{q} g$

States which are allowed to exist for a hybrid meson $q \bar{q} g$									
Gluon type	$L_{q \bar{q}}$	L_{g}	$L_{\text {tot }}$	$S_{q \bar{q}}$	S_{g}	$S_{\text {tot }}$	$J_{q \bar{q}}$	J_{g}	$J^{P C}$
E	1	0	1	1	1	$0,1,2$	$0,1,2$	1	1^{---}
E	0	1	1	0	1	1	0	0	1^{--}for-
E								1	0
Midden									
M	2	1	1,2	2	1	$1,2,3$	1^{--}		
M	0	1	1	0	1	1	0	1	1^{--}
E	2	1	$1,2,3$	2	1	$1,2,3$	$0,1,2$	1	1^{--}
E	1	2	$1,2,3$	1	1	$0,1,2$	$0,1,2$	1	1^{--}

$$
\begin{aligned}
& \mathbf{X} \quad \mathbf{r}_{\bar{c}} \\
& \begin{aligned}
\mathcal{Y}_{\mathrm{KLM}_{\mathrm{L}}}^{\mathrm{L}_{x} \mathrm{~L}_{\mathrm{y}}}\left(\Omega_{5}\right) & \stackrel{\text { def }}{=} \mathcal{N}\left(K, L_{x}, L_{y}\right) A_{n}^{L_{x} L_{y}}(\alpha)\left[Y_{L_{x}}\left(\Omega_{x}\right) \otimes Y_{L_{y}}\left(\Omega_{y}\right)\right]_{L M_{L}} \\
A_{n}^{L_{x} L_{y}}(\alpha) & =(\cos \alpha)^{L_{x}}(\sin \alpha)^{L_{y}} P_{n}^{L_{y}+1 / 2, L_{x}+1 / 2}(\cos 2 \alpha) \\
\mathcal{N}\left(K, L_{x}, L_{y}\right) & =\sqrt{2(K+2)} \sqrt{\frac{\Gamma(n+1) \Gamma\left(L_{x}+L_{y}+n+2\right)}{\Gamma\left(L_{x}+n+3 / 2\right) \Gamma\left(L_{y}+n+3 / 2\right)}}
\end{aligned} \\
& \Psi_{J M_{J}}(\mathbf{x}, \mathbf{y})=\frac{1}{\rho^{5 / 2}} \sum_{K, \gamma} \chi_{K, \gamma}(\rho) \Upsilon_{K \gamma}^{J M_{J}}\left(\Omega_{5}\right) \\
& \Upsilon_{K \gamma}^{J M M_{J}}\left(\Omega_{5}\right)=\left[\chi_{\mathrm{KL}}^{\mathrm{LLL}^{\mathrm{LL}}} \otimes|S\rangle\right]_{J M_{J}} \\
& \mathbf{r}_{g} \\
& -\frac{\hbar^{2}}{2 m_{b}}\left[\frac{\partial}{\partial \rho^{2}}-\frac{(K+3 / 2)(K+5 / 2)}{\rho^{2}}+(\ldots)\right] \chi=E \chi
\end{aligned}
$$

A. Novoselsky et al. Phys. Rev. A 49, 833 (1994)

The Hamiltonian for the Y4260

$$
\begin{aligned}
& H\left(\mu, \mu_{g}\right)=H_{0}+V \\
& H_{0}=\mu+\frac{\mu_{g}}{2}+\frac{m^{2}}{\mu}+\frac{\mathbf{p}_{X}^{2}}{\mu}+\frac{\mathbf{p}_{Y}^{2}}{2 \phi} \\
& V=\sigma\left|r_{q g}\right|+\sigma\left|r_{\bar{q} g}\right|+V_{\mathrm{C}} \\
& V_{C}=-\frac{3 \alpha_{s}}{2 r_{q g}}-\frac{3 \alpha_{s}}{2 r_{\bar{q} g}}+\frac{\alpha_{s}}{6 r_{q \bar{q}}}
\end{aligned}
$$

$\sigma:$ energy density
α_{s} : the strong coupling constant

$$
\begin{array}{r}
m_{q}=m_{\bar{q}}=m \\
\mu_{q}=\mu_{\bar{q}}=\mu
\end{array}
$$

$$
\begin{aligned}
& \mathbf{X}=\mathbf{r}_{q}-\mathbf{r}_{\bar{q}} \\
& \mathbf{Y}=\mathbf{r}_{g}-\frac{\mathbf{r}_{q}+\mathbf{r}_{\bar{q}}}{2}
\end{aligned}
$$

V. Mathieu, Phys. Rev. D 80, 014016 (2009)

The einbein field formalism crucial to the QCD string model

$\sqrt{\mathbf{p}^{2}+m^{2}}+V(r) \Longleftrightarrow \frac{\mathbf{p}^{2}+m^{2}}{2 \mu}+\frac{\mu}{2}+V(r)$
μ : einbein field

More complicated numerical calculation. Another disadvantage of this form is that the action cannot be used to describe massless particles.

Thus need to re-parametrise this with auxiliary fields

Its form is non-relativistic, while its dynamics is relativistic. (In addition, its quantisation becomes easier in a path integral framework. In a string language, the Nambu-Goto action's form is too awkward to quantise.)

We have an additional degree of freedom.
$S=\sqrt{-m^{2}} \int d \tau \sqrt{\dot{X}^{\mu} \dot{X}^{\nu} \eta_{\mu \nu}} \quad$ By ЕоМ $S=\frac{1}{2} \int d \tau\left(\frac{\dot{X}^{\mu} \dot{X}^{\nu} \eta_{\mu \nu}}{\mu}-\mu m^{2}\right)$ cf.
K. Becker et al. String theory and M-theory: A modern introduction (CUP) 2007

Yu. S. Kalashnikova \& A. V. Nefediev, Physics of Atomic Nuclei, Vol. 68, No. 4, 2005, pp 650-660

Fitted to the lowest two states of the charmonium

$$
{ }^{1} S_{0} \quad{ }^{3} S_{1} \quad \square \quad \begin{aligned}
\sigma & =0.16 \mathrm{GeV}^{2} \\
\alpha_{s} & =0.55 \\
m_{c} & =1.48 \mathrm{GeV}
\end{aligned}
$$

Auxiliary field technique

$$
\begin{aligned}
& \left.\frac{\delta H}{\delta \mu_{c}}\right|_{\mu_{c}=\mu_{c 0}}=0 \\
& \left.\frac{\delta H}{\delta \mu_{g}}\right|_{\mu_{g}=\mu_{g 0}}=0 \quad \mu_{c}=1.598, \quad \mu_{g}=1.085
\end{aligned}
$$

-

 \square

 Coscces

 Coscces

 Coscces

 }

 }O-th EXCITED STATE RMS RADIUS=0.3854527

TOTAL ENERGY=4.485681

0-th EXCITED STATE, TOTAL ENERGY=4.486 GeV

1-th EXCITED STATE
RMS RADIUS=0.594226

TOTAL ENERGY=4.888503

1-th EXCITED STATE, TOTAL ENERGY $=4.889 \mathrm{GeV}$

Quark-antiquark effective potential
Characterised by:
Λ Projection of the total angular momentum of a gluon onto the $q \bar{q}$ axis
$(+/-)$ Reflection in the plane which contains the axis
(g / u) charge conjugation \& the spatial inversion of $\mathrm{q} \bar{q}$

The static quark potential cannot be directly measured in an experiment
The hadronic scale parameter defined by the interaction between static quarks

$$
\left.r^{2} \frac{d V(\mathbf{r})}{d r}\right|_{r=r_{0}}=1.65
$$

Phenomenological potential models
$V(\mathbf{r})$: The static quark potential
C. Morningstar \& M. Peardon, Phys. Rev. D 564043 (1997)
R. Sommer, Nucl. Phys. B411, 839 (1994)

Quark-antiquark effective potential
Modification to the Cornel potential \rightarrow the Luscher term

$$
\begin{aligned}
& V_{q \bar{q}}=a r+\frac{\pi}{r}\left(N-\frac{1}{12}\right) \\
& \begin{aligned}
V_{q \bar{q}} & =\sqrt{a^{2} r^{2}+2 \pi a N}+\frac{\alpha_{s}}{6 r} \\
\quad & q \bar{q} \mathbf{8} \\
& \approx a r+\frac{\pi N}{r} \quad \text { At large distances }
\end{aligned}
\end{aligned}
$$

N : The excitation number of string
F. Buisseret at al, Eur. Phys. J. A 29, 343-351 (2006)

$$
I=\int \frac{d \mathbf{p}_{c c} d \mathbf{k}}{\sqrt{2 \omega}(2 \pi)^{6}} \Psi_{l_{B}}^{m_{B} *}\left(\mathbf{p}_{B}\right) \Psi_{l_{C}}^{m_{C} *}\left(\mathbf{p}_{C}\right) \Psi_{l_{H_{B}}}^{m_{H_{B}}}\left(\mathbf{p}_{c \bar{c}}, \mathbf{k}\right) d \Omega_{f} Y_{l}^{m *}\left(\Omega_{f}\right)
$$

$\pm \mathbf{p}_{f}$:momentum of the final mesons

$$
\begin{gathered}
\mathbf{p}_{c}+\mathbf{p}_{\bar{c}}=-\mathbf{p}_{\bar{q}}-\mathbf{p}_{q}=-\mathbf{p}_{g} \\
\mathbf{p}_{\bar{c}}+\mathbf{p}_{q}=-\mathbf{p}_{\bar{q}}-\mathbf{p}_{c} \equiv \mathbf{p}_{f}
\end{gathered}
$$

I : odd function with regard to \mathbf{k}
The hybrid WF is odd for \mathbf{k} as $l_{g}=1$
S-wave mesons' WFs identical

Only S-wave-gluon hybrid charmonium can decay into DD

$\Gamma=0.103 \pm 0.008$
Beringer 2012

$$
m_{s}=0.5 \mathrm{GeV}
$$

$\operatorname{kmax}=\mathrm{pmax}=2.6 \quad\left(p_{r}, p_{\theta}, p_{\phi}, \theta_{B}, \phi_{B}\right)=(55,10,10,10,10)$

Summary

i. $\mathrm{Y}(4260)$, discovered more than a decade ago, is a hybrid meson candidate
ii. We have carried out an indepth analysis of the particle by adopting hyperspherical formalism \& auxiliary field technique
iii. \rightarrow Spectrum above the experimental data, but some additional factors (channel coupling etc) may make our theory more consistent with the experimental data
iv.Quark-antiquark effective potentials extracted - it was below the lattice calculation. Suggesting the single gluon assumption was naive.
v.Decay width of psi4160 (1--) too large \rightarrow likewise that of $\mathrm{Y}(4260)$ may be

The modification of the selection rule - Mixing with states close to Y4260, eg psi(4160). But small effects due to small overlap stemming from many nodes of the wave functions (second order mechanism)

- Lorentz covariant effect on the light quarks (difficult to estimate)
- Channel coupling effects

Other modes
Not forbidden

$$
\begin{aligned}
& Y(4260) \rightarrow D^{* *} \bar{D}^{*} \rightarrow D^{*} \bar{D}^{*} \pi^{\prime} s \\
& Y(4260) \rightarrow D^{*} \bar{D}^{* *} \rightarrow D^{*} \bar{D}^{*} \pi^{\prime} s
\end{aligned}
$$

$Y(4260)$ sits below the $D^{* *} \bar{D}^{*}$ thresholds.
Resonance not narrow.
Possibility of dominant $Y(4260) \rightarrow D^{*} \bar{D}^{*} \pi^{\prime} s$

$$
\begin{aligned}
g_{M}\left(k_{x}, k_{y}\right) & =\int\left|\Phi_{J M_{J}}\right|^{2} \frac{d \Omega_{k x}}{(2 \pi)^{2}} \frac{d \Omega_{k y}}{(2 \pi)^{2}} \\
& =(2 \pi)^{2} \sum_{K \gamma K^{\prime}} \sum_{K_{c} K_{c}^{\prime}} U_{K_{c} \gamma K_{c}^{\prime}} U_{K \gamma K^{\prime}}(-i)^{K_{c}^{\prime} i^{K^{\prime}}} f_{K^{\prime} L_{x} L_{y}}^{K_{c}^{\prime} L_{x} L_{y}}\left(\alpha_{k}\right)
\end{aligned}
$$

Probability densities
Integrated with regard to the angular variables
of x and y : the resulting function is a function of
Integrated with regard to the angular variables
of x and y : the resulting function is a function of radial components of them. I

$$
g_{C}(X, Y)=\int|\Psi|^{2} d \Omega_{x} d \hat{\Omega}_{y}
$$

$$
\begin{aligned}
&=\frac{1}{\rho^{5}} \sum_{K \gamma, K^{\prime}} \chi_{K^{\prime}, \gamma}^{*}(\rho) \chi_{K \gamma}(\rho) f_{K L_{y} L_{x}}^{K^{\prime} L_{y} L_{x}}(\alpha) \\
& f_{K L_{x} L_{y}}^{K^{\prime} L_{y} L_{x}}(\alpha)= \mathcal{N}\left(K^{\prime}, L_{y}, L_{x}\right) P_{n^{\prime}}^{L_{y}+1 / 2, L_{x}+1 / 2}(\cos 2 \alpha) \\
& \times \mathcal{N}\left(K, L_{y}, L_{x}\right) P_{n}^{L_{y}+1 / 2, L_{x}+1 / 2}(\cos 2 \alpha) \\
& \times(\cos \alpha)^{2 L_{x}}(\sin \alpha)^{2 L_{y}}
\end{aligned}
$$ -

\square

\square
\square
\square
\square

$$
8
$$

\qquad

$$
\begin{aligned}
\Psi_{\text {tot }} & =\frac{u(X, Y)}{X Y}\left[Y_{L_{x}}\left(\Omega_{X}\right) \otimes Y_{L_{y}}\left(\Omega_{Y}\right)\right]_{L} \\
& =\frac{1}{\rho^{5 / 2}} \sum_{K, \gamma} \chi_{K \gamma} \mathcal{N} A_{n}^{L_{x} L_{y}}(\alpha)\left[Y_{L_{x}}\left(\Omega_{X}\right) \otimes Y_{L_{y}}\left(\Omega_{Y}\right)\right]_{L}
\end{aligned}
$$

RMS hyper-radius \& radius

$\left\langle\rho^{2}\right\rangle=\int\left|\Psi_{J M_{J}}\right| \rho^{2} d \mathbf{x} d \mathbf{y}=\sum_{K, \gamma, M_{L}} \int_{0}^{\infty}\left|\chi_{K \gamma}\right|^{2} \rho^{2} d \rho$
$\left\langle r^{2}\right\rangle=\frac{1}{3}\left\langle r_{q}^{2}+r_{\bar{q}}^{2}+r_{g}^{2}\right\rangle \quad$ Regarding the 3 particles as point particles

If the mass of particle 1 and that of particle 2 are the same, the RMS radius are more easily calculated:
$\mathbf{r}_{1}^{2}+\mathbf{r}_{2}^{2}+\mathbf{r}_{3}^{2}=\left(\frac{m_{1}^{2}+m_{2}^{2}+m_{3}^{2}}{M m_{1} m_{3}}(\sin \alpha)^{2}+\frac{1}{m_{1}}(\cos \alpha)^{2}\right) \rho^{2}(\hbar c)^{2}$
Then we calculate

$$
\sqrt{\left\langle\rho^{2}\right\rangle}, \quad \sqrt{\left\langle r^{2}\right\rangle}
$$

cf. D.V. Fedorov et al, Phys.Lett. B 389 (1996), 631-636
B.V. Danilin et al, Phys. Rev. C 71, 057301 (2005)

Charmonium spectrum calculated within the QCD string framework

$$
\begin{aligned}
& H_{\mathrm{tot}}^{c \bar{c}}=H_{0}^{c \bar{c}}+V_{\mathrm{Lin}+\mathrm{Cou}}^{c \bar{c}}+V_{\mathrm{str}}^{c \bar{c}}+V_{\mathrm{LS}}^{c \bar{c}}+V_{\mathrm{ss}}^{c \bar{c}}+V_{S T}^{c \bar{c}} \\
& H_{0}^{c \bar{c}}+V_{\mathrm{Lin}+\mathrm{Cou}}^{c \bar{c}}=2 \sqrt{\mathbf{p}^{2}+m^{2}}+\frac{\sigma r}{\hbar c}-\frac{4}{3} \frac{\alpha_{s} \hbar c}{r} \\
& \rightarrow \frac{m^{2}}{\mu}+\mu+\frac{\mathbf{p}^{2}}{\mu}+\frac{\sigma r}{\hbar c}-\frac{4}{3} \frac{\alpha_{s} \hbar c}{r}
\end{aligned}
$$

$$
V_{\mathrm{str}}^{c \bar{c}}=-\frac{\sigma \mathbf{L}^{2}}{6 \mu^{2} r}(\hbar c)
$$

$$
\begin{array}{rlrl}
V_{\mathrm{LS}}^{c \bar{c}} & =-\frac{\sigma}{2 \mu^{2} r}(\mathbf{L} \cdot \mathbf{S})(\hbar c)+\frac{2 \alpha_{s}}{\mu^{2} r^{3}}(\mathbf{L} \cdot \mathbf{S})(\hbar c)^{3} & \sigma & =0.16 \mathrm{GeV}^{2} \\
V_{\mathrm{ss}}^{c \bar{c}} & =\frac{32 \pi \alpha_{s}}{9 \mu^{2}}\left(\mathbf{s}_{q} \cdot \mathbf{s}_{\bar{q}}\right) \delta(\mathbf{r})(\hbar c)^{3} & \alpha_{s} & =0.55 \\
m_{c} & =1.48 \mathrm{GeV}
\end{array}
$$

$$
V_{\mathrm{ST}}^{c \bar{c}}=\frac{4 \alpha_{s}}{3 \mu^{2} r^{5}}\left[3\left(\mathbf{s}_{q} \cdot \mathbf{r}\right)\left(\mathbf{s}_{\bar{q}} \cdot \mathbf{r}\right)-r^{2}\left(\mathbf{s}_{q} \cdot \mathbf{s}_{\bar{q}}\right)\right](\hbar c)^{3}
$$

Yu. S. Kalashnikova et al., Phys. Rev. D 64, 014037 (2001)
Yu. S. Kalashnikova \& A. V. Nefediev, Phys. Rev. D 77, 054025 (2008)

The spin-spin interaction

Smearing technique to deal with the delta function issue

$$
\delta(\mathbf{r})=\frac{\delta(r)}{2 \pi r^{2}}
$$

$$
\begin{gathered}
\delta(r) \rightarrow \frac{\Lambda^{2}}{4 \pi r} e^{-\Lambda r} \\
\Lambda=3.5 \quad 1 / \mathrm{fm} \\
\text { Smearing }
\end{gathered}
$$

The three-dimensional delta function in the spherical coordinates

The spin-spin operator is dealt with by the following identity:
$\mathbf{s}_{1} \cdot \mathbf{s}_{2}=\frac{1}{2}\left(S(S+1)-\frac{3}{4}-\frac{3}{4}\right)$
T. Yoshida et al., Phys. Rev. D 92, 114029 (2015)

The tensor-type interaction

$$
\begin{aligned}
V_{\mathrm{ST}}^{c \bar{c}} & =\frac{4 \alpha_{s}}{3 \mu^{2} r^{5}}\left[3\left(\mathbf{s}_{q} \cdot \mathbf{r}\right)\left(\mathbf{s}_{\bar{q}} \cdot \mathbf{r}\right)-r^{2}\left(\mathbf{s}_{q} \cdot \mathbf{s}_{\bar{q}}\right)\right] \\
& =\frac{\alpha_{s}}{3 \mu^{2} r^{3}} S_{12} \\
& \rightarrow \frac{\alpha_{s}\left(1-e^{-\Lambda r}\right)^{2}}{3 \mu^{2} r^{3}} S_{12} \\
S_{12} & =12\left(\mathbf{s}_{q} \cdot \mathbf{n}\right)\left(\mathbf{s}_{\bar{q}} \cdot \mathbf{n}\right)-4\left(\mathbf{s}_{q} \cdot \mathbf{s}_{\bar{q}}\right) \\
& =6(\mathbf{S} \cdot \mathbf{n})^{2}-2 \mathbf{S}^{2}
\end{aligned}
$$

Spin singlet states are not affected by the tensor-type force

Yu. S. Kalashnikova et al., Phys. Rev. D 64, 014037 (2001)
T. Yoshida et al., Phys. Rev. D 92, 114029 (2015)

The tensor-type interaction

Eigenstate denoted by: $\quad\left|L^{\prime} J M_{J}\right\rangle$

$$
\begin{aligned}
S_{12}\left|J+01 J M_{J}\right\rangle= & 2\left|J 1 J M_{J}\right\rangle \\
S_{12}\left|J-11 J M_{J}\right\rangle= & \frac{-2(J-1)}{2 J+1}\left|J-11 J M_{J}\right\rangle \\
& +\frac{6 \sqrt{J(J+1)}}{2 J+1}\left|J+11 J M_{J}\right\rangle \\
S_{12}\left|J+11 J M_{J}\right\rangle= & \frac{-2(J+2)}{2 J+1}\left|J+11 J M_{J}\right\rangle \\
& +\frac{6 \sqrt{J(J+1)}}{2 J+1}\left|J-11 J M_{J}\right\rangle
\end{aligned}
$$

N. F. Mott \& H. S. Massey, The Theory of Atomic Collisions, Oxford University Press, third ed. (1965)

The tensor-type interaction

$$
\begin{aligned}
& S_{12}\left|110 M_{J}\right\rangle=-4\left|110 M_{J}\right\rangle \\
& S_{12}\left|111 M_{J}\right\rangle=2\left|111 M_{J}\right\rangle
\end{aligned}
$$

No mixing of the S and D states $\psi=\psi_{S}+ד$

$$
S_{12}\left|011 M_{J}\right\rangle=0
$$

No mixing of the P and F states $\quad \psi^{\prime}=\psi_{P}^{\prime}+\frac{\prime}{F}$

$$
S_{12}\left|112 M_{J}\right\rangle=-\frac{2}{5}\left|112 M_{J}\right\rangle
$$

The calculated spectrum of charmonium

Generalised Laguerre expansion method was used

${ }^{1} S_{0} \quad{ }^{3} S_{1} \quad{ }^{1} P_{1} \quad{ }^{3} P_{1} \quad{ }^{3} P_{0} \quad{ }^{3} P_{2}$

Exp	2.981	3.096	3.525 hc	3.510	3.414	3.556
Kalashnikova	2.981	3.104	3.528	3.514	3.449	3.552
This work GS	3.036	3.072	3.537	3.509	3.424	3.578

Exp	3.638 etac	3.686 psi(2S)			3.927 chic2(2P)
First excited state	3.702	3.719	3.992	3.958	3.901

$\mathrm{Mu}=1.720 \mathrm{GeV}$, Lambda=3.5 1/fm GL-alpha=2

The calculated spectrum of charmonium

Generalised Laguerre expansion method was used
${ }^{1} S_{0} \quad{ }^{3} S_{1} \quad{ }^{1} P_{1} \quad{ }^{3} P_{1} \quad{ }^{3} P_{0} \quad{ }^{3} P_{2}$

Exp	2.981	3.096	3.525 hc	3.510	3.414	3.556
Kalashnikova	2.981	3.104	3.528	3.514	3.449	3.552
This work GS	3.005	3.079	3.536	3.509	3.408	3.580

Exp	3.638 etac	3.686 psi(2S)			3.927 chic2(2P)	
First excited state	3.686	3.720	3.996	3.967	3.909	4.046

$\mathrm{Mu}=1.720 \mathrm{GeV}$, Lambda=6.0 $1 / \mathrm{fm}$ GL-alpha=2, 30 basis functions

